Future Satellite TLC systems: the challenge of using very high frequency bands

Lorenzo Luini
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano (Italy)
Agenda

- EM wave propagation through the atmosphere
 - Ionospheric propagation
 - Tropospheric propagation
- Earth-space communication systems
 - First satellites
 - Modern systems
 - Near future systems
- Design of Earth-space communication systems
 - EM wave propagation prediction models
 - The role of Numerical Weather Predictions
 - EM wave propagation experiments
- Conclusion
Earth-space electromagnetic wave propagation

EM wave propagation through the atmosphere

The ionosphere
(≈ 90 km → 450 km)

The troposphere
(≈ ground → 10/15 km)
Atmospheric propagation: the ionosphere

- **Ionosphere**: free to move charges → plasma medium
- Strong interaction with EM waves
- For $f < 100$ MHz (approx.) → EM wave likely to be totally reflected
- For $f > 100$ MHz, the main effect is signal delay (mostly affecting global navigation satellite systems – GNSS)

Earth-space communication systems operating at frequencies higher than 1 GHz
Atmospheric propagation: the troposphere

Troposphere:
- The layer where weather events take place

Constituents affecting EM waves:
- Gases
- Clouds
- Hydrometeors

Effects on EM waves:
- Refraction
- Scintillations due to turbulence
- Absorption
- Scattering
- Depolarization
- Noise

Nitrogen (78%)
Oxygen (21%)
Water vapor (0-4%)
Others (1%)

Clouds (ice and liquid water)

Melting layer
Rain, hail, snow, ...
Tropospheric effects on EM waves: gaseous absorption

Signal **fades** caused by **atmospheric gases** (1–100 GHz)

- Gaseous components affecting EM propagation in this frequency range → oxygen and water vapor
- Absorption → due to the rotation of oxygen (magnetic dipole) and water vapor (electric dipole) molecules induced by EM waves

- Significant absorption levels only around **specific frequencies** → resonance
- **Oxygen** and **water vapor** absorption depends on **temperature, pressure, and relative humidity**
- Both always present in the atmosphere, but **low variability** in space and time
Atmospheric effects on E.M. waves: gaseous absorption

- Temperature: $T = 15^\circ$C
- Pressure: $P = 1013$ mbar
- Water vapor density: $WV = 7.5$ g/m3

Ku Band

- Oxygen absorption peak
- Water vapor absorption peak

Ka/Q/V Bands

- Oxygen absorption peak
- Water vapor absorption peak

Frequency (GHz):
- 22.25 GHz
- 60 GHz

Specific attenuation (dB/km):
- $T = 15^\circ$C
- $P = 1013$ mbar
- $WV = 7.5$ g/m3
Effects caused by ice and water particles (rain, clouds, hail, …)

- Signal attenuation → both scattering and absorption due to the ice and water particles
- Effects for $f > 10 \text{ GHz}$ → dimensions of particles (e.g. few mm for rain) comparable with the wavelength
- Different physical mechanism → unlike for gases, induced fade continuously increasing with frequency (10-100 GHz range) and concentration of the particles (e.g. rain rate)
- Different phenomena due to different size, concentration and physical state of the particles
 - RAIN → tens of dBs
 - CLOUDS → some dBs

Absorption

Scattering

λ
Tropospheric effects on EM waves: secondary effects

Depolarization
- Change of the wave polarization due to the anisotropic shapes of ice/water particles

Scintillations
- Very fast oscillations of the received signal due to turbulence in the atmosphere (humidity/temperature variations, clouds, winds, rain drops …) → distortion of the wave front and generation of multipath

Snow/ice particles
- Negligible attenuation up to 100 GHz
- Ice particle are anisotropic → depolarization issues (e.g. cirrus clouds)
Tropospheric effects on EM waves: measured signal

Beacon signal measurement in Spino d’Adda (Italsat experiment)

Italsat experiment at Spino d'Adda (elev. 37.8 deg.) - 08.07.1996

Gaseous absorption
Cloud attenuation
Rain attenuation
Tropospheric effects on EM waves: measured signal

Italsat experiment at Spino d'Adda (elev. 37.8 deg.) - 08.07.1996

Signal level at 18.7 GHz (dB)

Scintillations
First telecommunication satellites

First artificial satellites

Sputnik 1 – 1957 (Soviet Union)

Syncom 3 – 1964 (USA)

First artificial satellite, equipped also with a radio payload (20 and 40 MHz)

First GEO satellite (1.8 and 7.6 GHz)
Modern Earth-space systems: GEO satellites

Many GEO satellites (max frequency around 30 GHz, 40 and 50 planned) at 36000 km from Earth
Modern Earth-space systems: GEO satellites

From broadcast to interactive (e.g. Internet via satellite) \(\rightarrow \) KA-SAT by EUTELSAT

- 82 beams covering the whole Europe
- Spots are arranged so as to reuse frequency channels (3 color scheme \(\rightarrow \) increase capacity)
- Dual polarization system
- Total capacity \(\rightarrow \) 70 Gbps (up to 475 Mbps per beam in 250 MHz bandwidth)
Some **MEO satellites** (max frequency around 30 GHz, 40 and 50 planned) at **8000 km** from Earth → **O3b 12 satellites** covering the equatorial/tropical areas (more to come)
Modern Earth-space systems: LEO satellites

- LEO satellites (e.g. 160-2000 km) from Earth → Iridium constellation (95) already in place for communication (satellite telephone) and upgrade expected soon

- SpaceX and OneWeb to implement global broadband internet connectivity using other LEO constellations
Modern Earth-space systems: EO and deep space

Earth observation
- High number of Earth Observation satellites in orbit and planned for the near future (e.g. MSG)
- Scientific instruments with higher and higher resolution
- Links with high data rate and reliability
- Shift from X (below 10 GHz) to Ka band (20/30 GHz)

Deep space missions
- More and more interest in deep space mission (e.g. Mars exploration)
- Scientific instruments with higher and higher resolution
- Links with high data rate and reliability
- Shift from X (below 10 GHz) to Ka band (20/30 GHz)
Modern Earth-space systems: EO and deep space

Earth observation

• High number of Earth Observation satellites in orbit and planned for the near future (e.g. MSG)
• Scientific instruments with higher and higher resolution
• Links with high data rate and reliability
• Shift from X (below 10 GHz) to Ka band (20/30 GHz)

Deep space missions

• More and more interest in deep space mission (e.g. Mars exploration)
• Scientific instruments with higher and higher resolution
• Links with high data rate and reliability
• Shift from X (below 10 GHz) to Ka band (20/30 GHz)

Overall, there is a need for more and more accurate design of Earth-space links at high frequency and with high reliability
How to achieve reliable and accurate prediction of the atmospheric channel?

What is the main trend of atmospheric channel modeling?

What are the key points to be considered?
Models: from empirical to physically-based

Empirical/semi-empirical models [1] → start from local data to devise models:

• **Advantages**: simple, quick to develop and to apply

• **Disadvantages**: typically valid locally, for specific ranges of the input values (e.g. frequency, ground station height, …), limited field of applicability

Physically-based models → exploit global data to develop models that have a sound physical basis:

• **Advantages**: global, valid for extended ranges of the input values, flexible applicability (different scenarios and different output quantities)

• **Disadvantages**: more complex to develop, implement and apply, higher computation time
Empirical models

- **Typical approach**: definition of simple models based on local data
- Well-established models available but with clear **limitations**: accuracy, reliability (based on available data) and applicability (e.g. complex systems with more stations)

\[P(A) = f(A,k) \]
Physically-based approach

- Example: synthesize atmospheric constituents that impair EM waves, with high spatial resolution (both time and space) starting from data at coarser resolution (e.g. ECMWF) [2],[3],[4]

- Simulate the interaction between the atmosphere and any wireless system

- Main advantages:
 - Any geometrical/electrical characteristics of the link
 - Different propagation quantities can be calculated (attenuation, delay, depolarization, …)
 - Seamless summation of all attenuation contributions
 - Different scenarios, same model for consistent results (e.g. site diversity, GEO/LEO/MEO systems, …)
Models: from yearly to seasonal/monthly basis

- Propagation prediction models work mainly on yearly basis → e.g. power margin predicted to guarantee that the system is available for 99.99% of the time in a year

- But what happens on monthly basis? In other words, is that goal achieved for each month or are there months with significantly worse propagation conditions?

\[f = 18.5 \text{ GHz}, \text{ satellite position} = 100^\circ \text{ W} \]
Usefulness of monthly attenuation statistics [5],[6]

- Overall power available on board can be reallocated unevenly over the region (on monthly/seasonal basis) so as to provide more power where more adverse conditions are expected: save costs in the planning phase and improve system performance in the operative phase.

Models: from yearly to seasonal/monthly basis

\[f = 12.1 \, \text{GHz}, \text{ satellite position} = 19.2^\circ \, \text{E} \]
Data: the role of Numerical Weather Predictions

- Main input to propagation prediction models → local meteorological data (e.g. integrated water vapor content for gaseous attenuation prediction)

- When no local data are available, Numerical Weather Prediction data (e.g. ECMWF) are the fundamental source of information to be used (e.g. ITU-R models)

- Advantages → long-term, gridded, global, multisource (ground-based + space-borne instruments), checked for errors/consistency/biases, homogeneous, …

- Disadvantages → mixture of measurements and modeling (accuracy), typically coarse temporal and spatial resolution
In the last decade NWP data have been evolving considerably:

- **Accessibility**: direct download from websites, such as ECMWF [7] and NOAA
- **Availability**: more and more meteorological quantities made available
- **Accuracy**: constant improvement of atmospheric models over time
- **Resolution**: finer in time, even more, in space

<table>
<thead>
<tr>
<th>Name</th>
<th>Data period</th>
<th>Temporal resolution</th>
<th>Horizontal resolution</th>
<th>Vertical resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA-15</td>
<td>1979-1993</td>
<td>6 hours</td>
<td>1.5°×1.5°</td>
<td>31 levels</td>
</tr>
<tr>
<td>ERA-40</td>
<td>1957-2001</td>
<td>6 hours</td>
<td>1.125°×1.125°</td>
<td>60 levels</td>
</tr>
<tr>
<td>ERA-Interim</td>
<td>1979-present</td>
<td>6 hours</td>
<td>0.75°×0.75°</td>
<td>60 levels</td>
</tr>
<tr>
<td>ERA-5</td>
<td>1979-present</td>
<td>1 hour</td>
<td>(\approx 0.28°×0.28°)</td>
<td>137 levels</td>
</tr>
<tr>
<td>ERA-6 (2020?)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Data: the role of Numerical Weather Predictions

<table>
<thead>
<tr>
<th>Name</th>
<th>Data period</th>
<th>Temporal resolution</th>
<th>Horizontal resolution</th>
<th>Vertical resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>1982-present</td>
<td>1 hour</td>
<td>0.1°×0.1°</td>
<td>137 levels</td>
</tr>
</tbody>
</table>

ERA-40 (1.125°×1.125°)

Operational (0.125°×0.125°)

Attenuation due to clouds at 50 GHz [7],[8]
Experiments: always a key resource

- Test of EM wave propagation models against experimental data collected during propagation campaigns (e.g. Olympus, ACTS, ITALSAT, Alphasat, …)
- Need of more experiments in tropical and equatorial areas, and specifically in some Countries

- Need of new experiments at higher frequency bands (e.g. beyond 50 GHz), and not only with GEO systems → LEO, MEO satellites
- Many critical aspects to be studied (e.g. depolarization and scintillations at very low elevation angles, rain and cloud attenuation scaling with elevation angle, …)

ITU-R DBSG3 for rain attenuation experiments
Conclusions and hints on other topics

Conclusions

• Reliable and accurate prediction of atmospheric channel modeling is more and more required by the current evolution of Earth-space communication systems
• Research efforts should shift more and more from empirical to physically-based models to enhance modeling accuracy, applicability and reliability
• Models allowing predictions also on seasonal/monthly basis will provide additional useful information to characterize the atmospheric channel
• Global Numerical Weather Predictions are gaining more and more a key role in atmospheric channel modeling thanks to the constant increase in their accuracy, availability and space-time resolution
• Propagation experiments, especially in developing Countries and also with non-GEO systems, remain a key resource for the progress of atmospheric channel modeling

Other topics

• Models and data for the operation of reconfigurable systems
• Free Space Optics for Earth-space links and associated modeling challenges
• The importance of accurate frequency scaling models for predictions in very high bands (W band)
References

[7] www.ecmwf.int

Beware of unreliable wireless links!

Thank you for your attention. Questions?

Email → lorenzo.luini@polimi.it
Website → http://luini.deib.polimi.it/