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Abstract— This paper presents MORSE (MOdel for Rainfall 

Statistics Estimation), a unified model for the prediction of 

spatial (PS(R)) and temporal (PT(R)) high-resolution rainfall rate 

statistics. Inputs to MORSE are the convective (Mc) and total 

(Mt) rain amounts cumulated in different time intervals, ranging 

from a few hours for the prediction of PS(R) to much longer 

intervals for the estimation of PT(R). Tests performed against 

PT(R)s on yearly (curves included in the DBSG3 database) and 

monthly (distributions derived from rain rate time series) basis 

provide very satisfactory results, which makes MORSE a reliable 

global model for the prediction of PS(R) on hourly basis and of 

PT(R) at any time scale (e.g. monthly, seasonal, yearly). 

 
Index Terms—Radiowave propagation, rainfall modeling, 

tropospheric effects 

 

I. INTRODUCTION 

ainfall attenuation represents the most severe impairment 

to the propagation of electromagnetic waves in the 

atmosphere at frequencies higher than 10 GHz, because 

hydrometeors scatter and absorb part of the transmitted power 

[1]. As a result, the design of wireless communication systems 

requires the knowledge of the local rainfall statistics, P(R), 

input to all the models predicting the impairments due to rain 

at one station [2], [3], as well as to synthesizers of realistic 

rain fields used for the simulation of distributed systems [4], 

[5]. Due to the lack of global long-term statistics, collected by 

raingauges with 1-minute integration time, as required for 

propagation applications to adequately sample the fast 

dynamics of the rainfall process, remarkable research efforts, 

dating back to the seventies (e.g. see [6] and [7]), have been 

devoted to developing methodologies for the estimation of 

local yearly rainfall statistics on a global basis from poor 

resolution or even cumulated (hourly, monthly or yearly) 

rainfall data. 

Conversion methods aimed at predicting 1-minute 

integrated P(R)s from rainfall statistics with longer integration 

time T (e.g. T = 1 hour [8]), although providing the best 

prediction accuracy among all the methodologies proposed so 

far [9], require input data that are not always readily available. 

Less accurate, but worldwide applicable, are meteorologically 
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based methods, which rely on an analytical formulation of the 

P(R) whose parameters depend on local long-term 

meteorological information [6], [7], [10]. The most 

acknowledged methodology of this kind, currently adopted by 

the International Telecommunication Union – Radio 

communication sector (ITU-R) [11] (hereinafter ‘ITU-R 

model’), requires as input the convective (
c

M ) and the total    

(
t

M ) rain amounts cumulated in an average year, and the 

mean yearly probability to have rain in a 6-hour time interval, 

h
P

6
. This information originates from the global ERA40 

database [12], made available by the European Centre For 

Medium-range Weather Forecast (ECMWF) on a regular 

latitude/longitude grid with 1.125°×1.125° resolution. 

Yearly rainfall statistics does not always provide the most 

appropriate information for the design of wireless 

communication systems. Indeed, some specific services take 

advantage of the knowledge of the P(R) on a seasonal or 

monthly basis, because they can be accordingly adapted in 

order to increase the system availability or the Quality of 

Service (QoS) [13]. 

Other applications require statistical information on the 

spatial distribution of rainfall. This is the case, for instance, of 

advanced satellite communication systems operating at Ka-

band and above for high data rate applications (e.g. broadcast 

of high-definition contents and internet connectivity via 

satellite). These systems counteract deep atmospheric fades 

[14] by implementing smart solutions, known as Fade 

Mitigation Techniques (FMTs), such as the dynamic resource 

allocation achievable with a reconfigurable on-board antenna 

[15]. By knowing the spatial distribution of rainfall over the 

whole satellite coverage area, the system distributes the 

limited onboard extra power so as to maximize the number of 

served users. 

This contribution presents MORSE (MOdel for Rainfall 

Statistics Estimation), a global methodology for the prediction 

of long-term point rain rate statistics on yearly (PT(R)) and 

monthly (PT(R)
m
) basis, as well as of spatial rainfall statistics 

(PS(R)). MORSE relies on the general methodology 

introduced in [16] and the parameters regulating the shape of 

the predicted rainfall statistics depend on the local values of 

t
M  and 

tc
MM /=β  (e.g. extracted from the ERA40 

database). The model’s coefficients for PT(R) and PT(R)
m
 

predictions have been tuned to reflect the use of rain 

accumulations collected on yearly (or monthly) instead of on 

hourly basis [16], thus making the application of MORSE very 
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effective to estimate temporal rain rate statistics. 

The remainder of the paper is organized as follows: section 

II presents the database of yearly and monthly point rainfall 

statistics employed in this study. Section III discusses the 

calibration of MORSE based on a subset of the available 

PT(R)s (reference data) and on the “calibrated” ERA40 

database (input data). In section IV, the prediction 

performance of MORSE is evaluated against an extensive 

dataset of PT(R)s collected worldwide and against monthly 

rainfall statistics derived from rain rate time series available to 

the authors. Afterwards, after final considerations on the 

model’s consistency in section V, section VI draws some 

conclusions. 

II. DATABASES OF POINT RAINFALL RATE STATISTICS 

Several yearly PT(R)s with 1-minute integration time have 

been gathered in the DBSG3 database of ITU-R [17]. Their 

number is, anyway, quite limited with respect to the needs 

because most of the instruments deployed for rainfall 

measurement produce outputs with long integration time 

(hour, day or even month). Since prediction models inherently 

estimate long-term distributions because they are devised to 

represent the average characteristics of the rain process, in this 

work, multiple single-year PT(R)s available for the same site 

have been aggregated to produce 104 long-term rainfall 

statistics. Fig. 1 shows the position of the sites which the 104 

PT(R)s refer to: they have been collected in 22 different 

Countries, with minimum and maximum site latitude equal to 

30.03° S and 64.86° N, respectively. 

 

 
Fig. 1.  Sites where P(R)s included in the DBSG3 have been collected. 

 

In order to assess the ability of MORSE in predicting 

rainfall statistics at time scales shorter than the year, the 

limited set of raingauge-derived rain rate time series available 

to the authors (no global catalogue is at disposal) have been 

worked out to produce monthly rain rate distributions 

(PT(R)
m
s). Table I lists some details on the rain rate time 

series: the 7 datasets refer to sites characterized by different 

climates (roughly defined as cold for Prague and Montreal, 

temperate for Spino d’Adda and Rome and tropical/equatorial 

for Florida, Houston and Kwajalein) and have been collected 

for at least five years. This is a key point because the statistical 

significance of the available data obviously becomes more and 

more critical as the time scale, which the statistics refer to, 

gets shorter. Indeed, while a calendar year can be considered a 

meteorological repetition period, the same month in different 

years may be characterized by very different precipitations, 

both in terms of occurrence and of type. As a result, the year-

to-year variability of rainfall statistics is far more pronounced 

on monthly than on yearly basis. In this respect, Fig. 2 gives 

an idea of the variability occurred in May in a temperate site 

like Spino d’Adda. 

 
TABLE I 

DETAILS ON THE RAIN RATE TIME SERIES USED IN THIS WORK (GEOGRAPHICAL 

COORDINATES OF THE RAINGAUGE AND DURATION OF THE EXPERIMENTS) 
 

Site 
Latitude 

(°N) 

Longitude 

(°E) 

Duration 

(years) 

Spino 

d’Adda 
45.46 9.56 9 

Rome 41.87 12.48 8 

Prague 50.10 14.44 5 

Montreal 45.52 -73.57 10 

Florida 28.34 -80.93 8 

Kwajalein 8.79 167.62 8 

Houston 29.77 -95.73 8 

 

 
Fig. 2.  Year-to-year variability of P(R)ms for Spino d’Adda, May. The bold 

dashed line refers to the whole measurement period (9 years). 

III. THE MODEL 

The prediction method presented in this contribution is 

founded on the analytical expression already introduced in 

[18], [2] and [4], and subsequently employed in [16] to 

estimate the small-scale spatial cumulative distribution of the 

rain rate. In this work, we re-propose the analytical form in (1) 

for the definition of a unified model for spatial and temporal 

rainfall rate statistics, P(R). 
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Here R is the rain rate (mm/h) exceeded with probability P, 

P0 defines the behavior of the curve for 0→R  mm/h, Ra is 

the asymptotical value of P(R), directly related to the 

maximum measured point rain rate, n mainly determines the 

shape of the curve and Rlow allows the probability to assume a 

finite value when 0→R  mm/h, as it is physically the case. 
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Besides permitting a very good analytical fit of any measured 

P(R), equation (1) also allows a simple computation of its 

third order derivative, as it is requested by well-established 

propagation prediction models relying on the cellular 

representation of rain fields [2], [4]. 

The parameters P0, n, Rlow and Ra are related to Mt (mm) 

and β = Mc/Mt as follows: 
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The above relationships indicate that the shape of the curve 

in (1) is tightly related to both Ra and Rlow, and, as a 

consequence, they depend on the Mc/Mt ratio. Similarly to 

what is shown in [16], the coefficients in the first three 

expressions of (2) are obtained by comparison with a set of 

reference rainfall statistics, whilst the last relationship has 

been introduced so as to preserve the input Mt value. Indeed, 

any analytical model of rainfall statistics should fulfill this 

requirement to maintain its physical soundness. 

The relationships in (2) are likely to be defined by different 

a, b, c, d, e, f, g, h coefficients when used for the prediction of 

PT(R) and of PS(R) because they receive as input Mt and β 

values calculated respectively on yearly (monthly) and on 

hourly basis. In fact, the coefficients of (2) reported in [16] are 

devised to properly react to combinations of Mt and β values 

typical of 3-/6-hour time intervals (β between 0 and 1) and, as 

such, are not suitable for input values averaged over long 

periods, whose β value never exceeds 0.78. 

Based on the discussion above, the coefficients relating n, 

Rlow and Ra to the input parameters have been tuned by taking 

as reference a subset of 23 out of the 104 PT(R)s mentioned in 

section II. Inputs are the mean yearly values of 
t

M  and β  

extracted from the “calibrated” ERA40 database (hereinafter 

referred to as ITU

t
M  and 

ITUβ ). Such a database, also used as 

input to the ITU-R model, was elaborated in the framework of 

an ESA (European Space Agency) study [19] to mitigate the 

significant bias shown by the original ERA40 mean yearly 

rainfall amount ( ERA

t
M ). In particular, ITU

t
M  is the result of the 

calibration procedure described in detail in [19] and [20]. 

As recommended by the ECMWF, for a site j with given 

geographical coordinates, )( jM ITU

t
 and )( j

ITUβ  are calculated 

by bilinear interpolation of the ITU

t
M  and 

ITUβ  values 

associated to the four ERA40 pixels surrounding site j. 

The calibration of MORSE for PT(R) estimation was 

achieved by reducing the prediction error quantified as: 
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where Rest(P) and Rmeas(P) are the rain rates respectively 

extracted from the estimated and measured PT(R), at the same 

probability level P. For each curve, the root mean square value 

of ε(P), RMSε, was calculated (values of P higher than 0.01% 

have been taken into account) and its average value over the 

23 reference PT(R)s was minimized. The result of this global 

optimization procedure, based on Genetic Algorithms [21], 

provided the following expressions: 
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In (4), it is necessary to set ββ =  for 001.0≥β  and 

001.0=β  for 001.0<β  to prevent Rlow from tending to 

infinity. 

The equations in (4), together with the last expression in 

(2), completely define the parameters of MORSE for the 

prediction of temporal rainfall statistics, while the spatial ones 

are estimated by resorting to the relationships proposed in 

[16], which, for convenience, are also reported below in (5). 
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In this way, MORSE turns out to be a unified model 

although with different coefficients for the prediction of 

spatial and temporal rainfall rate statistics. 

IV. ASSESSMENT OF THE MODEL 

A. Tests on yearly basis 

The performance of MORSE has been assessed against the 

full DBSG3 dataset of 104 single- or multiple-year PT(R)s. For 

each curve we have calculated the average (Eε) and root mean 

square value (RMSε) of ε(P) in (3) by including probability 

values associated to rain rates higher than or equal to R* = 1 

mm/h. The lowest probability value Pmin was chosen so as to 

consider at least 20 samples (minutes) and thus guarantee an 

acceptable degree of statistical significance to the reference 

PT(R) (e.g. for a one-year PT(R), this condition is met for 

Pmin = 0.004%). 

The prediction performance of MORSE is shown in Fig. 3 

and Fig. 4 for each input measurement (the numbering of the 

experiments is arbitrary). In addition, the figures’ legend 

reports ME and MRMS, the average value of Eε and RMSε, 

respectively. As a reference, Fig. 3 and Fig. 4 also depict the 
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prediction performance of the ITU-R model. Overall, with 

respect to the latter, MORSE shows a higher positive bias, but 

approximately the same MRMS. 

 

 
Fig. 3.  Average value of the error for each of the 104 PT(R)s extracted from 

the DBSG3 database and used for model assessment. Comparison between 

MORSE (black dashed line with squares) and the ITU-R model (gray solid 

line with circles). 

 

 
Fig. 4.  Root mean square value of the error for each of the 104 PT(R)s 

extracted from the DBSG3 database and used for model assessment. 

Comparison between MORSE (black dashed line with squares) and the ITU-R 

model (gray solid line with circles). 

 

Results in Fig. 3 and Fig. 4 indicate that MORSE yields a 

slightly lower prediction accuracy with respect to the ITU-R 

model (the difference in MRMS is 1%). This finding is due to 

the key physical characteristic of MORSE which, in contrast 

with the ITU-R model, preserves the input Mt value. As a 

result, the PT(R)s predicted by the ITU-R model tend to 

underestimate the mean yearly rain accumulation provided as 

input [22]. This additional constraint makes MORSE more 

physically sound at the expenses of a slightly lower 

performance. Finally, Fig. 5 shows the effectiveness of the 

models in predicting the exceedance probability associated to 

Rmin, the lowest rain rate value for each curve available in the 

DBSG3 database. We have considered only Rmin values 

between 0.2 and 1 mm/h because higher ones have been 

already included in the performance indicators depicted in Fig. 

3 and Fig. 4. In addition, Rmin values lower than 0.2 mm/h 

have been discarded to avoid extremely low values, whose 

accuracy and reliability is typically limited by the instrument 

resolution. This selection reduces the dataset to 32 

experiments. 

The figure’s legend reports the average (E) and root mean 

square value (RMS) of the estimation error, in this case 

defined as the difference between the percentage of the yearly 

time for which Rmin is exceeded, as estimated by each model 

and as extracted from measured data: the two models show 

quite similar RMS values, while MORSE offers a lower bias. 

 

 
Fig. 5.  Exceedance probability (expressed in percentage values) associated to 

0.2 mm/h < Rmin < 1 mm/h, the lowest rain rate value for each curve available 

in the DBSG3 database. Comparison between measured data (solid gray line 

with squares), MORSE (dashed black line with squares) and the ITU-R model 

(solid gray line with circles). 

 

B. Tests on monthly basis 

To assess the accuracy of MORSE in predicting PT(R)
m
s we 

have derived from the original ERA40 data the mean monthly 

values of the convectivity ratio, mβ , to be coupled with 

m

RGt
M

,
, the mean monthly rainfall accumulation derived from 

the rain rate time series collected by the raingauge (7 sites 

listed in Table I) and used to produce PT(R)
m
s. The choice of 

m

RGt
M

,
 instead of the one provided by a general database 

allows to partially mitigate the problems associated to the high 

year-to-year variability of PT(R)
m
s and points out that MORSE 

is not indissolubly linked to the total cumulated rain provided 

by the ERA40 database, but it can benefit from any other 

dataset with better accuracy (on the other side, mβ  cannot be 

directly calculated from raingauge data); indeed, this 

advantage comes from the last expression in (2), which 

defines the preservation of Mt: the more precise is this input to 

the model, the more accurate will be MORSE predictions. 

This is in contrast with the ITU-R model, in which the 

dependence of the model’s parameters on Mt is not so 

straightforward and, thus, it is not easy to draw any a-priori 

conclusion on the effects of using Mt values extracted from 

different datasets other than the ERA40 database. 

Fig. 6 depicts the prediction accuracy of MORSE. The best 

performance is achieved in the months from May to 

November (MRMS ≈ 20%), when convective precipitation 

prevalently occurs; on the contrary, the prediction error is 

higher in the remaining months (MRMS ≈ 30%) which are 

typically affected by mixed rain types (e.g. September/October 

in Spino d’Adda): this, in fact, yields more irregular PT(R)
m
s 

which can be more hardly reproduced by any analytical 

expression, including the one proposed in (1). 

As a matter of fact, 
m

RGt
M

,
 values are quite easily retrievable 
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from global meteorological databases such as GPCC [23] and 

GHCN [24]. In fact, both datasets combine high accuracy 

(they originate from thousands of raingauges deployed 

worldwide), statistical stability (many years of measurement) 

and global coverage (regular 0.25°×0.25° latitude/longitude 

grid for the former, point measurements for the latter). 

 

 
Fig. 6.  Monthly average (solid line) and root mean square (dashed line) 

values of the error for the PT(R)m available in this work. Predictions calculated 

using m

RGt
M

,
 and mβ  used as input to MORSE. 

V. MODEL CONSISTENCY 

MORSE is a unified model able to predict both spatial and 

temporal rain rate statistics and, as such, the results should be 

consistent each to the others regardless of the time/space basis 

which the input data refer to. This characteristic relies on the 

quasi-ergodicity property of the rainfall process, which 

implies that the temporal rain rate statistics collected by a 

rainguage at a given site, PT(R), is equivalent to the one 

obtained by cumulating the information on the precipitation 

affecting, at a given time, very many sites in the area 

surrounding the raingauge location, PS(R) [25]. It must follow 

that PS(R)s can be considered as PT(R) on hourly basis, i.e. 

PT(R)
h
, and that, as a consequence, despite the different set of 

model coefficients (see (4) and (5)), by aggregating the PS(R)s 

of the whole year, one must obtain the expected PT(R). This 

concept already tested in [16] on a limited set of data has been 

verified for all the sites included in the DBSG3 database, 

providing very good results: as an example, refer to Fig. 7, 

which depicts the PT(R) predictions for Jacksonville (Florida, 

USA, 8-year experiment) obtained by aggregating PS(R)s 

(gray dashed line, Eε = -0.3% and RMSε = 15.6%) and by 

directly applying MORSE as described in section IV.A (gray 

solid line, Eε = 3.7% and RMSε = 6.5%). Although both the 

use of the expressions in (4) and the procedure defined in [16] 

provide very satisfactory results in estimating PT(R), the 

former has the obvious advantage of being much simpler (it 

requires only one couple of ITU

t
M  and 

ITUβ  as input instead of 

all the h

t
M 6  and h6β  values). 

Although not shown here for brevity’s sake, the model’s 

consistency was verified to hold also at time scales different 

from 6 hours. For example, the distribution obtained by 

aggregating the predicted PT(R)
m
s (

m

RGt
M

,
and mβ  as input to 

the set of relationships in (4)) correctly reproduces the yearly 

PT(R). 

 

 
Fig. 7. MORSE prediction accuracy on PT(R): Jacksonville, Florida, USA. 

Data extracted from the DBSG3 database (black solid line) are compared with 

the predictions obtained by applying MORSE with the coefficients in (4) 

(direct estimation using ITU

t
M and ITUβ  as input) and with the coefficients in 

(5) (aggregation of several PS(R)s using h

t
M

6 and h6β  as input). 

VI. CONCLUSION 

MORSE (MOdel for Rainfall Statistics Estimation), a 

unified model for the prediction of spatial (PS(R)) and 

temporal (PT(R)) rainfall rate statistics at high resolution is 

presented and tested here. MORSE relies on an analytical 

formulation of the P(R) whose main tuning parameters are 

linked, through simple expressions, to the local convective 

(Mc) and total (Mt) rain amounts cumulated in different time 

intervals (e.g. extracted from the ERA40 database), ranging 

from a few hours for the prediction of PS(R), to much longer 

intervals, such as one month or one year, for the estimation of 

PT(R) at different time scales. Starting from the formulation 

presented in [16] for PS(R) prediction, the model’s parameter 

have been first re-tuned on a subset of yearly PT(R)s made 

available by the ITU-R in its DBSG3 database, in order to 

reflect the use of Mt and β = Mc/Mt values averaged on yearly 

(monthly) basis, rather than on hourly basis. Tests performed 

on the whole set of yearly PT(R)s included in the DBSG3 

database indicate that, when compared against the model 

currently recommended by the ITU-R for the global prediction 

of yearly PT(R)s, MORSE shows comparable results, but with 

the definite advantages of requiring two instead of three input 

meteorological parameters and of preserving Mt given in 

input. Indeed in force of this latter feature, MORSE is not 

indissolubly linked to the total cumulated rain extracted from 

the ERA40 database, but it can benefit from any other dataset 

with better accuracy. In addition, MORSE turns out to provide 

a better performance in estimating the exceedance probability 

associated to Rmin, the lowest rain rate value in the P(R). 

Finally, the tests performed against raingauge-derived monthly 
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PT(R)s in the seven available sites show that MORSE provides 

a very satisfactory prediction accuracy also at time scales 

shorter than the year. As a matter of fact, although requested 

for the design of some satellite communication systems, 

predicted monthly PT(R)s should be handled with great care 

due to the very high month-to-month variability that greatly 

exceeds the already significant year-to-year variability. 
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