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 

Abstract—Three global rainfall rate prediction methods are 

evaluated in their ability to estimate local precipitation statistics, 

which are key to predict the impact of rain on the propagation of 

electromagnetic waves through the atmosphere. Specifically, the 

ITU-R P.837-6, MORSE and the ITU-R P.837-7 prediction 

methods are tested against long-term rainfall data collected in 19 

sites in Ireland. The results indicate that the ITU-R P.837-7 

prediction method delivers the best performance, and that both 

the ITU-R P.837-6 prediction method and MORSE exhibit a 

positive bias, likely due to the overestimation of the yearly rain 

amount in the maps used as input to such models. The results of 

the testing activity provide information on the accuracy of rainfall 

rate prediction methods at regional level, an important factor to 

consider given the direct link between the magnitude of 

rain-induced attenuation and the operational frequency of 

wireless communication links. 

 
Index Terms— Rainfall rate modelling, electromagnetic wave 

propagation, satellite communications 

I. INTRODUCTION 

The propagation of electromagnetic (EM) waves in the 

atmosphere at frequencies higher than 10 GHz is severely 

impaired by the presence of hydrometeors, mainly by rain: 

raindrops induce high levels of absorption and scattering, 

which contribute to the decrease in the power density carried by 

EM waves [1]. 

The performance of high-frequency  communication 

systems (e.g., satellite systems operating in the Ka, Q and V 

bands or 5G systems operating beyond the 37 GHz range) is 

assessed through the application of propagation prediction 

methods, among which those aimed at estimating rain 

attenuation play a key role [2],[3]. The accuracy of these 

prediction methods is tightly linked to their main input, the 

Complementary Cumulative Distribution Function of the 

rainfall rate (CCDF, or P(R)). For propagation applications, 

rainfall data must be collected at an integration time of at least  

1 minute  in order to capture the fast temporal dynamics of the 

rainfall process [4]. As instruments deployed to monitor rainfall 

are usually characterized by much longer integration times (e.g., 

hours or even days), two main types of  methodologies have 
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been developed to predict a P(R) suitable for communications 

system design: the first – which we call conversion 

methodologies – aims at predicting 1-minute integrated P(R)s 

from local rainfall statistics with a longer integration time (e.g., 

60 minutes) [4],[5],[6], while the second relies on analytical 

formulations for the P(R) whose parameters depend on local 

long-term meteorological quantities such as monthly/yearly 

rainfall accumulations and average temperature (see e.g., [7] 

and [3]). Recommendation ITU-R (International 

Telecommunication Union – Radiocommunication Sector) 

P.837-6 (Annex 3) [8] is an example of a conversion 

methodology, while Recommendation ITU-R P.837-6 (Annex 

1) and MORSE (Model for Rainfall Statistics Estimation) [9] 

are examples of the analytical category. This paper evaluates 

the performance of three rainfall rate prediction methods: a) 

Recommendation ITU-R P.837-6 Annex 1 [8], b) MORSE [9], 

and c) Recommendation ITU-R P.837-7 Annex 1 [12], a recent 

revision of Recommendation ITU-R P.837-6 Annex 1 based on 

an improved rainfall rate prediction method developed by 

ONERA [10]. Reference [11] demonstrated that 

Recommendation ITU-R P.837-7 Annex 1 provides the best 

accuracy predicting the rainfall rate exceedance probability on 

a global scale. 

Though analytical prediction methods generally provide 

good overall accuracy, recent in-depth investigations have 

shown that, locally, they might deliver quite poor results. See 

for example [13], where the prediction method in P.837-6 was 

found to strongly overestimate P(R)s collected at several 

Norwegian sites. Since the effects of rain become more 

important as the communication system’s operational 

frequency increases, it is critical to investigate the accuracy of 

rainfall rate prediction methods not only at a global scale, but 

also at regional level. 

Given the weather peculiarity of Ireland, where there is a 

higher probability of experiencing rain (compared to the mean 

over Europe), and considering that the ITU-R P.837-6 

prediction method is expected to deliver biased predictions due 

to the overestimation of the rain accumulation in coastal areas 

(see [13] and [14]), this 19-site dataset offers a unique 

opportunity to investigate the accuracy of global P(R) 

prediction methods at a regional level. 

The remainder of the paper is organized as follows. Section 

II gives an overview of the rainfall rate database used to 

evaluate each prediction method’s performance. Section III 

briefly describes the ITU-R P.837-6 prediction method, 

MORSE and the new ITU-R P.837-7 prediction method, while 

Section IV includes the tests against the Irish data. Finally, 

Section V draws some conclusions. 

II. RAINFALL RATE DATABASE AND DATA PROCESSING 

The data used in this analysis consists of 1-minute integrated 

rainfall accumulation series, collected over 19 sites that are part 

of Met Éireann’s automated monitoring network (TUCSON). 

The weather instruments include Casella tipping gauges (with 

0.1 mm or 0.2 mm resolution), which provide as output the 

number of tips per minute.  

The availability of the raingauges during the period of 

observation exceeds 97% in all stations. Table 1 and Fig. 1 

provide an overview of station location and measurement 
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duration, which ranges from 4 (2012-2015) to 8 (2008-2015) 

years. This extensive set of data was used to calculate the 

long-term mean yearly P(R)s using the procedure described in 

detail in [15]. In aggregate, the measured data spans over 135 

station-years, making it unique for the purpose of 

communication system evaluation. For more information on 

the raingauge network itself, the reader is addressed to [16]. 

 

 

 
Fig. 1.  Location and duration of the measurements for the stations used in this 

study [16]. 

III. RAINFALL RATE STATISTICS PREDICTION METHODS  

A. ITU-R P.837-6 

A significant improvement in rainfall rate prediction was 

achieved with the analytical model for the P(R) proposed by 

Poiares-Baptista and Salonen [17]. This prediction method was 

adopted by ITU-R and a slightly modified version of it is 

included in Annex 1 of Recommendation ITU-R P.837-6 [8]. 

The prediction method is globally applicable and relies on 

coarse-resolution meteorological data. Specifically, the 

probability of exceeding a rainfall rate intensity R in a year is 

calculated according to [8]: 

 











cR+

bR+
aRP=P(R)

1

1
exp0

    (1) 

 

where a = 1.09 and coefficients P0, b and c are site dependent 

and related to the meteorological quantities Mt (annual rainfall 

accumulation), Pr6 (probability to have rain in 6-hour slots) and 

 (ratio between convective and total precipitation): 
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The values of Mt, Pr6 and  for a specific site are extracted 

through bilinear interpolation from the “calibrated“ ERA40, a 

re-analysis product of ECMWF (European Centre for 

Medium-range Weather Forecast), which provides a 

comprehensive set of meteorological quantities mapped on a 

regular 1.125°×1.125° latitude×longitude grid. The definite 

overestimation of the Mt value, particularly in the 

tropical/equatorial areas, led to its recalibration by means of the 

GPCP (Global Precipitation Climatology Project) database [18] 

in the framework of an ESA-funded research activity [19]. The 

resulting “calibrated” Mt map has the same ERA40 spatial 

resolution and improved accuracy. 

B. MORSE 

MORSE is a global method for the prediction of 1-minute 

integrated P(R) at different time scales, ranging from a monthly 

to a yearly basis. The prediction method requires as input the 

local convective (Mc) and total (Mt) rain amounts, cumulated 

over the period of interest, which can be extracted from gridded 

NWP (Numerical Weather Prediction) [9]. MORSE defines the 

P(R) as: 
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In (3) R is the rainfall rate (mm/h) exceeded with probability 

P, P0 defines the behavior of the curve for R approaching 0 

mm/h, Ra is the asymptotical value of P(R), directly related to 

the maximum measured point rainfall rate, n determines the 

shape of the curve and Rlow ensures that the probability assumes 

a finite value as R approaches 0 mm/h. 

The parameters P0, n, Rlow and Ra are related to the local 

TABLE I 
LOCATION OF THE STATIONS USED IN THIS STUDY 

# 
Station 

altitude 

(m) 

Lat 

(˚N) 

Lon 

(˚E) 
Years 

1 Ballyhaise 78 54.051 -7.306 8 

2 Oak Park 62 52.857 -6.909 8 

3 Moore Park 46 52.158 -8.258 8 

4 Roches Point 40 51.789 -8.240 8 

5 Sherkin Island 21 51.472 -9.423 8 

6 Finner 33 54.490 -8.239 5 

7 Malin Head 20 55.370 -7.337 6 

8 Phoenix Park 48 53.358 -6.342 8 

9 Athenry 40 53.287 -8.785 4 

10 Mace Head 21 53.322 -9.901 8 

11 Valentia Observatory 24 51.936 -10.238 5 

12 Claremorris 68 53.707 -8.989 5 

13 Newport 22 53.920 -9.570 8 

14 Dunsany 83 53.510 -6.656 8 

15 Mt Dillon 39 53.723 -7.975 7 

16 Markree 34 54.172 -8.453 8 

17 Gurteen 75 53.052 -8.005 8 

18 Mullingar 101 53.536 -7.357 8 

19 Johnstown II 62 52.292 -6.491 7 
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inputs Mt and  as follows [9]: 
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where �̅� = max(0.001, 𝛽) to prevent Rlow from approaching 

infinity. The last parameter P0 is calculated as follows: 
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with   the incomplete gamma function. 

In (5), 
t

R  must be expressed in mm/h by dividing the total 

rainfall accumulated in the period (mm) by the number of hours 

in the same period (e.g., 365·24 = 8760 for a non-leap year). 

The inputs to MORSE, i.e., Mt and , are extracted from the 

“calibrated” ERA40 database attached to recommendation 

ITU-R P.837-6. 

C. ITU-R P.837-7 (ONERA)  

The P.837-7 prediction method (developed by ONERA) is a 

global 1-minute integrated P(R) prediction method. It 

originated from the increasing need to investigate the impact of 

monthly predictions on system design. The prediction method 

relies on three assumptions: 

 

 the monthly statistics of rainfall rate, conditioned to the 

presence of rain, follow a log-normal distribution; 

 the monthly scale parameter σi of the log-normal 

distribution is independent of the reference site; 

 the monthly mean rainfall rate conditioned to the presence 

of rain ir  only depends on the monthly average 

temperature collected at 2 meters above the ground1, Ti. 

 

The first two assumptions have been investigated in the past 

on a yearly basis [20], but have never been confirmed on a 

monthly basis. 

From a mathematical point of view, the monthly CCDF of 

rainfall rate for the i-th month, Pi(R), can be written as: 
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where 
i

P0  is the monthly probability of rain given by: 

 

 
1 2 meters is the standard height of any air temperature measurements 

according to the World Meteorology Organization (WMO) guidelines. 
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where Ni corresponds to the number of days in the i-th month 

(with N2 = 28.25) and 
iTM  is the monthly total rain amount.  

The annual rainfall rate CCDF, P(R), is obtained by 

combining the monthly distributions: 
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An extensive analysis conducted on a large network of rain 

gauges deployed across the United States [21] has shown that 

ir  can be calculated as: 
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Further information on the derivation of (9) can be found in 

[11]. In particular, the use of (9) can sometimes result into 

unrealistic values of 0i
P higher than 70% (and even higher than 

100%) mainly in winter and for a very restricted area (west 

coast of Canada) [11]. In order to obtain more realistic values, 

0i
P  = 70% is set as the maximum reasonable value, which, in 

turns, results in a slight modification of the value ir  (see Step 

6b in [12]). In addition, note that the applicability of (9) to areas 

outside the US has been recently corroborated in [22] using 

temperature data collected across Spain.  

Finally, a fixed value of σi is chosen, i.e., the one returning a 

null bias for the annual rainfall rate exceeded for 0.01% of the 

time, using the same previous database used to derive (9): 

 

26.1i  (10) 

 

Monthly maps of 
iTM  have been generated from a 

combination of two digital products: GPCC Climatology 

Version 2015 [23] over land (0.25°×0.25° spatial resolution) 

and ERA Interim (1979-2014) [24] over water (0.75°×0.75° 

spatial resolution). Monthly maps of Ti have been generated 

worldwide from the ERA Interim database (1979-2014).  

 

For the sake of clarity, Table II summarizes the inputs to the 

three prediction methods considered in this contribution, as 

well as their temporal and spatial resolutions. 
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IV. PERFORMANCE OF THE PREDICTION METHODS 

The accuracy of each method in predicting the rainfall rate 

statistics is assessed against the measured data presented in 

Section II. Specifically, the prediction performance is 

quantified in terms of average value and root mean square value 

of the following error figure: 
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where  jE PR
i

 and  jM PR
i

are the rain rates respectively 

extracted from the estimated and measured P(R) (for site i), at 

the same probability level Pj > 0.001%.  

Therefore, the single-site average value, Ei, and single-site 

root mean square value, RMSi, are defined as: 
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where ni is the number of probability levels taken into account 

for the P(R) relative to site i. The error figure is limited to 

samples for which R > 2 mm/h in order to avoid taking into 

account inaccurate low rainfall rate values [11]. 

 Finally, as suggested in [11], the multi-site average value, E, 

and multi-site root mean square value, RMS, associated to each 

prediction method is calculated by weighting the error figure in 

(11) with the number of observation years: 
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where i is the number of observation years of rainfall 

accumulation data used to calculated the P(R) relative to site i, 

and NS is the number of sites (here NS = 19). 

Fig. 2 provides a sample of the measured P(R) (data collected 

in Phoenix park, over 8 years, between 2008 and 2015), and the 

rainfall rate statistics obtained from the three prediction 

methods. As displayed in the figure’s legend, the best and worst 

prediction accuracy is achieved by the ITU-R P.837-7 and 

P.837-6 prediction methods, respectively. 

Fig. 3 and Fig. 4 provide a more comprehensive overview of 

the prediction performance by showing Ei and RMSi, 

respectively, for each site. Overall, the P.837-7 prediction 

method shows the smallest bias and also provides the lowest 

RMSi. Conversely,  the ITU-R P837-6 and MORSE prediction 

methods display a larger RMS. This is mainly ascribable to the 

positive bias reported in Fig. 3, which, in turn, is likely due to 

the meteorological inputs to both prediction methods: as 

reported in [13], Mt tends to overestimate the actual rainfall 

accumulations, especially in coastal areas. The bias in the 

ITU-R P.837-7 prediction method is much more limited thanks 

to a different set of input maps, characterized by better accuracy 

(GPCC relies on raingauge measurements) and finer spatial 

resolution (see Table II). Another element contributing to the 

improved accuracy of the ITU-R P.837-7 prediction method is 

the calculation of the yearly P(R) as combination of the 

monthly P(R)s: this approach reflects the local peculiarity of 

the rainfall process much better than methods providing the 

direct prediction of the yearly P(R).  

 

 

 
Fig. 2. P(R) prediction example: Phoenix park (2008-2015) 

 

 

TABLE II 
DETAILED DESCRIPTION OF THE INPUTS TO THE RAINFALL RATE 

PREDICTION METHODS 

Prediction 

method 
Inputs 

Temporal 

resolution of 

inputs 

Spatial 

resolution of 

inputs 

ITU-R P.837-6 

Mt 

Pr6 


Annual 

1.125°×1.125° 

1.125°×1.125° 

1.125°×1.125° 

MORSE 
Mt 

 
Annual 

1.125°×1.125° 
1.125°×1.125° 

ITU-R P.837-7 
Mt 
T 

Monthly 
0.25°×0.25° 
0.75°×0.75° 
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Fig. 3. Overall accuracy of the prediction methods: average value (E) as a 
function of the site number in Table I. 

  
Fig. 4. Overall accuracy of the prediction methods: root mean square value 

(RMS) as a function of the site number in Table I. 
 

Fig. 5 presents the error  - as defined in (11) - for a single 

exceedance probability value: P = 0.01%, significant because it 

is currently the only P(R) point required to perform rain 

attenuation predictions using the ITU-R prediction methods 

(see [25] and [26]). Fig. 6 presents the RMS value calculated 

for all sites as a function of the exceedance probability Pj; 

mathematically: 
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Results in Fig. 5 and Fig. 6 reinforce the results reported in 

Fig. 3 and Fig. 4: the ITU-R P.837-7 and the ITU-R P.837-6 

prediction methods provide the best and worst prediction 

accuracy, respectively, though a general tendency to 

overestimate R0.01% emerges. All prediction methods exhibit 

similar performance for values of P ≥ 0.1%, while for P < 0.1% 

the prediction errors increase - expected because of the 

decrease in the statistical significance of the curves - but more 

slowly for the ITU-R P.837-7 prediction method. 
 

 

 
Fig. 5. Prediction accuracy on R0.01%. 

 

 

 
Fig. 6. Prediction accuracy as a function of the exceedance probability. 

V. CONCLUSIONS 

The tests on the performance of the three rainfall rate 

prediction methods considered in this paper indicate that using 

the ITU-R P.837-7 method will improve the accuracy in the 

prediction of a P(R) in Ireland, compared to the results 

produced by the ITU-R P.837-6 and MORSE prediction 

methods. Moreover, as presented in [11], the performance 

improvement brought by the ITU-R P.837-7 prediction method 

(based on the ONERA approach) over the ITU-R P.837-6 

prediction method is corroborated via similar tests conducted 

over Colombia and Spain. An enhancement in the accuracy of 

rainfall rate prediction can be directly related to improvements 

in the attenuation prediction, and will be beneficial for any 

application involving high frequency wireless links, such as the 

provision of broadband services via satellite in Ireland (with 

over seven satellite service providers in the region according to 

[27]): indeed increasing the accuracy of the input P(R) will 

translate into more accurate link quality predictions and should 

also bring improvements to the characteristics of the service 

delivered. 
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