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Abstract—A methodology to synthesize three-dimensional 

spatially correlated cloud fields from Numerical Weather 

Prediction (NWP) products is presented. The target area is 200 

km×200 km and the horizontal spatial resolution is 1 km×1 km. 

The field synthesis relies on the stochastic approach proposed by 

Bell and the main model’s parameters are extracted from high-

resolution cloud fields observed by the MODIS sensor. The 

model’s inputs are the fractional cloud cover and the average 

integrated cloud liquid water content provided by an NWP 

dataset (the ERA40 reanalysis in this study). Also the vertical 

profile of clouds is modelled, based on the analysis of data 

collected by the Cloud Profiling Radar on-board the CloudSat 

satellite. Tests on the model performance indicate that both first-

order (Complementary Cumulative Distribution Function - 

CCDF) and second-order (spatial distribution) statistics of the 

integrated cloud liquid water content are reproduced with good 

accuracy in several sites in Europe. The proposed model is one of 

the main blocks of a simulator of weather disturbances affecting 

radio wave propagation, primarily intended to support the design 

and performance assessment of Earth-space Communication 

Systems (EHF range or optical wavelengths) but also of possible 

interest for all the applications involving radiative transfer in the 

atmosphere. 

 
Index Terms— Electromagnetic propagation, cloud effects, 

Fade Mitigation Techniques, radiative transfer. 

 

I. INTRODUCTION 

HF carriers are nowadays becoming very attractive to 

satellite communication (SatCom) system operators 

because they offer wide bandwidth for the provision of 

advanced multimedia and interactive services. Above 10 GHz, 

the atmosphere has a definite impact on Earth-space links and, 

while rainfall always represents the prevalent impairment 

affecting radio waves [1], the contribution of suspended liquid 

water becomes significant at frequencies above 20 GHz and in 

low elevation links, not only in terms of specific attenuation, 

but also for the high occurrence probability of clouds (40–80% 

of the yearly time in Europe). Even more, at optical 

wavelengths, which, in principle, would enable Earth-space 

communication systems with extremely high data rates, the 

presence of clouds along the path is the limiting factor because 

of the large density and marked optical extinction properties of 
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micrometric droplets [2]. 

In the field of wave propagation, which this contribution 

addresses, the prediction of cloud effects on satellite links is 

tackled by few models of different complexity and 

applicability. A class of semiempirical models addressing the 

EHF range, such as those proposed by Altshuler and Marr [3] 

and by Dintelmann and Ortgies [4], relate cloud attenuation AC 

to different meteorological quantities (e.g. the surface absolute 

humidity) by defining expressions whose coefficients have 

been regressed on existing measurements. Other ones are more 

physically sound since they preliminarily introduce a cloud 

model to evaluate cloud attenuation. Among them, it is worth 

mentioning the methodology proposed by Dissanayake et al. in 

[5], which predicts cloud attenuation statistics based on the 

classification of clouds into four classes with associated key 

average properties (vertical and horizontal extent, water 

content) and probability of occurrence. The model developed 

by Salonen and Uppala, henceforth referred to as TKK 

(Teknillinen KorkeaKoulu) model [6], has received great 

attention (it is currently adopted in recommendation ITU-R 

P.840-6 [7]) because of its physical basis (it relies on the 

identification of cloud presence from vertical profiles of 

pressure, relative humidity and temperature (PHT), in turn 

derivable from radiosonde observations (RAOBS), and then it 

calculates specific attenuation in each layer according to the 

Rayleigh approximation [8]).  

Cloud models for attenuation prediction currently available 

in the literature are limited in their applicability because 

intrinsically mono dimensional. In fact, they typically provide 

the vertical profile of the cloud, while its horizontal 

distribution is assumed to be uniform: as a result, models of 

this kind are restricted in estimating the impact of clouds on 

complex SatCom systems implementing site diversity schemes 

for the mitigation of high fades [9] or on Low Earth Orbit 

(LEO) satellite applications where the ground antenna changes 

elevation (from very low to high) and azimuth angles in some 

few minutes. Indeed, in these scenarios, the spatial correlation 

of clouds plays a relevant role. So far, this aspect has been 

addressed only in some works, such as [10], where the spatial 

distribution of clouds has been studied on continental scale 

(Europe, North and South America), although using 

meteorological data with coarse spatial resolution (2.5°×2.5° 

latitude/longitude grid). The correlation of clouds in space has 

been also duly investigated in [11] using 5 years of cloud 

cover data collected every 6 hours in 33 sites across Spain. 
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This contribution presents SMOC (Stochastic Model Of 

Clouds), a methodology to synthesize high-resolution three-

dimensional (3-D) cloud fields. The philosophy underlying the 

model is first explained in Section II; the discussion continues 

in Section III with the description of how the main parameters 

for the development of SMOC have been extracted from a set 

of cloud fields observed by the MODerate-resolution Imaging 

Spectroradiometer (MODIS) on-board the LEO Aqua satellite. 

Section IV details the full procedure to synthesize spatially 

correlated fields of integrated cloud liquid water content L 

from Numerical Weather Prediction (NWP) data. Section V 

focuses on how the vertical development of clouds is modeled 

starting from the observation of several vertical profiles of 

cloud liquid water content collected by the Cloud Profiling 

Radar (CPR) (CloudSat satellite). In Section VI the ability of 

SMOC in synthesizing realistic cloud fields is assessed, whilst 

Section VII finally draws some conclusions. 

II. RATIONALE OF THE CLOUD MODEL 

SMOC is a methodology to synthesize a statistically 

meaningful dataset of high-resolution 3-D cloud fields. The 

model takes advantage of the stochastic approach proposed by 

Bell in [12], originally devised for rain field synthesis, which, 

as an intermediate step, generates random spatially correlated 

Gaussian fields. In this application, we synthesize spatially 

correlated cloud fields using the a priori knowledge of the 

fractional cloud cover and the average integrated cloud liquid 

water over the “target area”, typically derivable from global 

meteorological products (e.g. NWP from the European Centre 

for Medium-range Weather Forecast, ECMWF [13]). 

The main idea underpinning SMOC is that, by introducing 

suitable statistical properties of L (first-order statistics and 

spatial distribution) derived from high-resolution real cloud 

fields, it is possible to de-integrate average cloud quantities 

regularly provided worldwide over a coarse latitude/longitude 

grid with long sampling time (NWP), and, in practice, to 

synthesize realistic maps of integrated liquid water content, L, 

with fine spatial resolution (1 km×1 km) over areas in the 

order of 200 km×200 km (the “target area”). SMOC external 

input data and internal parameters are: 

 

• EL, the mean value of the cloud liquid water content over 

the target area, including L = 0 mm; 

• SL, the standard deviation of the cloud liquid water content 

over the target area, including L = 0 mm; 

• f, the fractional cloud cover over the target area; 

• ρ(x,y), the spatial correlation of L. 

 

EL and f are extracted from NWP datasets, which typically 

provide such meteorological information worldwide (uniform 

latitude/longitude grid); on the other hand, SL and ρ(x,y) come 

from the processing of MODIS cloud maps as these quantities 

are not provided by NWP. The third dimension is introduced 

through an analytical profile for the vertical distribution of the 

liquid water content, with parameters directly dependent on L, 

as inferred from CloudSat observations. 

III. HORIZONTAL DISTRIBUTION OF CLOUDS: MAIN FEATURES  

A. The high-resolution cloud field database 

The database used for the investigation of the horizontal 

distribution of clouds originates from the remote sensing 

observations collected by MODIS, which travels a 705-km 

high, sun-synchronous, near-polar orbit, thus achieving the full 

coverage of the Globe in less than two days. The MODIS 

sensor is a scientific payload mainly designed to provide 

measurements on large-scale global dynamics including 

changes in Earth’s cloud cover, radiation budget and processes 

occurring over the oceans, land, and in the lower atmosphere. 

Radiance data are acquired by 36 optical channels (wavelength 

in the 0.4-14.4 µm range) with high spatial resolution (from 

250 m to 1 km footprint, linear size) implementing automatic 

in-flight calibration procedures [14]. Raw data are first 

processed by the MODIS Characterization Support Team 

(MCST) to provide high quality calibrated products to the 

MODIS Science Team (MST) for diversified Earth science 

applications [15]. 

Among the various atmospheric high-resolution products 

made freely available by the National Aeronautics and Space 

Administration (NASA) there are maps of integrated liquid 

water content L whose dimensions are 200 km×2000 km and 

whose spatial resolution is 1 km×1 km, definitely suitable to 

adequately catch the spatial variability of L within clouds. In 

particular, we have downloaded 3090 swaths collected over 

Europe (20° N ≤ latitude ≤ 62° N and −10° E ≤ longitude ≤ 

37° E) in 2010 using the Mirador web interface [16]. As an 

example, Fig. 1 shows the spatial distribution of the integrated 

liquid water content as observed by MODIS along one swath. 

 

 
 

Fig. 1. Example of the spatial distribution of integrated cloud liquid water, L, 

as observed by MODIS along a swath over Europe. 

 

B. Data processing and characterization of clouds spatial 

distribution 

As a preliminary step, original swaths were subdivided into 

10 maps as wide as 200 km×200 km in order to deal with 
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dimensions typical of NWP products (e.g. 2°×2° 

latitude/longitude grid). 

The resulting 13183 maps containing clouds (the full dataset 

with 30900 maps includes also cloud-free images) were 

processed to identify possible relationships between SL and f or 

EL because NWP products do not provide SL, whose value, as 

anticipated in Section II, is a necessary element of SMOC for 

cloud field synthesis. The second couple of variables turned 

out to be the most appropriate one and the conditional 

probability density function p(SL|EL) was found to be well 

approximated by the lognormal function, whose expression is: 
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where µp and σp, which are both function of EL, are the mean 

and standard deviation values of the natural logarithm of SL, 

respectively.  

As an example, Fig. 2 depicts p(SL|EL) for two classes of EL 

(low values on the top and high values on the bottom), 

including µp and σp of the fitting MLE (Maximum Likely 

Estimation) lognormal distribution. 
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

S
L
 (mm)

P
ro

b
a

b
ili

ty
 d

e
n
s
ity

 f
u
n

c
ti
o
n

S
L
 statistics conditioned to 0.007 < E

L
 < 0.02 - NS = 1323

 

 

Data

Lognormal fit

µ
p
 = -3.16

σ
p
 = 0.49

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

S
L
 (mm)

P
ro

b
a

b
il
ity

 d
e

n
s
it
y
 f

u
n

c
ti
o
n

S
L
 statistics conditioned to 0.165 < E

L
 < 0.24 - NS = 1297

 

 

Data

Lognormal fit

µ
p
 = -1.53

σ
p
 = 0.38

 

Fig. 2. Examples of p(SL|EL), the statistical distribution of SL conditioned to 

EL; low and high values of EL on the top and bottom side, respectively. 

Empirical data and MLE lognormal distributions. 

 

In order to fully characterize p(SL|EL), being EL 

exponentially distributed as shown in Fig. 3, eleven EL bins of 

different width have been defined in such a way to include in 

each of them approximately the same number of samples (NS 

≈ 1300). For each class, the MLE lognormal distributions 

fitted to the empirical p(SL|EL) show root mean square (RMS) 

values of the percentage relative difference error that never 

exceed 10%. Moreover, as it is clear from Fig. 4 and Fig. 5, 

both µp and σp reveal quite a regular trend with EL (squared 

dots represent the center values of each class), and, thus, can 

be properly fitted by the following simple expressions: 
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Fig. 3. Distribution of EL derived from MODIS data; empirical data and MLE 

exponential distribution. 
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Fig. 4. Trend of µp with EL. 
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Fig. 5. Trend σp with EL. 
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In turn, the distribution of L within each 200 km×200 km 

map (conditioned to L > 0 mm) was found to be lognormal as 

shown in Fig. 6, where a sample cloud field observed by 

MODIS (top) and the statistical characterization of L (bottom) 

is provided in terms of Cumulative Distribution Function 

(CDF). In addition to EL, SL, and f, the figure title also includes 

µLN and σLN of the MLE lognormal distribution fitting L data 

with evident satisfactory accuracy. 
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Fig. 6. MODIS cloud field example (top) and statistical characterization of L 

(bottom). 

 

The appropriateness of the lognormal approximation for L is 

quantified in the figure legend which also reports the average 

(Eε) and standard deviation (σε) values of the relative error 

figure ε defined as: 
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 In (3), Lm(P) and Lf(P) are the L values (mm) extracted 

from the reference (MODIS) and fitted CDFs, respectively, at 

given probability levels P covering the full 0-1 range, with 

step of 0.001. 

Fig. 7 shows the trend of the average Eε (solid line) and σε 

(dashed line) as a function of the fractional cloud cover f, 

together with the percentage number of MODIS cloud fields 

considered in each class (gray bars). Besides showing that f 

tends to be rather uniformly distributed between 0 and 1, 

except for the prevalence of fields with full cloud coverage, 

results confirm that L in each map tends to be lognormally 

distributed, being the approximation slightly more accurate for 

larger coverage values. 
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Fig. 7. Trend of the average Eε (solid line) and σε (dashed line) as a function 

of the fractional cloud cover f, together with the percentage number of cloud 

fields considered in each class (gray bars). 

 

The final information required to synthesize cloud fields is 

the spatial distribution of L (including pixels with L = 0) that 

we have investigated by means of the spatial correlation index 

defined as [17]: 

 

[ ] [ ] [ ]
[ ] [ ])()(

)()(E)()(E
),(

yx

yxyx
yx

LL

LELLL

σσ
ρ

−⋅
=  (4) 

 

E[•] and σ[•] are the mean and standard deviation 

operators, whilst )(xL and )(yL  are the cloud liquid water 

content time series, respectively relative to pixels x  and y  in 

each 200 km×200 km cloud map. In calculating ρ, we have 

assumed that the cloud field is stationary in space (like for rain 

fields [17]) and independent of the site in Europe the target 

area refers to; this implies that the spatial correlation between 

two points depends (mostly) on their distance and only 

marginally on their position, i.e.: 
 

)(),( yxyx −== dρρ  (5) 

 

Fig. 8 depicts the spatial correlation of L obtained by 

averaging ρ values relative to all the couples of pixels at the 

same distance d (light dashed gray line). The figure also 

reports the spread of ρ around its average value (gray scale 

density scatter plot, higher concentration in darker areas), 

which allows to visually infer the degree of the cloud field 

spatial stationarity, which has been assumed in this work for 

modeling purpose. For convenience, the average spatial 

correlation of rainfall as obtained from a set of rain fields 
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derived by the NIMROD weather radar network [18] has been 

added to Fig. 8 in order to show the much higher spatial 

variability of precipitation with respect to clouds. 

As clarified in [12] by Bell, the stochastic approach 

proposed here to synthesize realistic cloud fields starts from 

the generation of random Gaussian fields, whose spatial 

correlation ρG(d) needs to be provided as input to the 

generation process. To this aim, we have estimated the average 

ρG(d) by first turning each MODIS cloud field into a truncated 

Gaussian field, which, under the assumption of lognormal 

distribution for L, corresponds to inverting (9) reported in 

Section IV below. Afterwards the spatial correlation of the 

random Gaussian process has been calculated from converted 

maps using the same definition of ρ in (4) and assuming again 

spatial stationarity. The resulting average ρG(d) is well 

represented by the following analytical expression (the 

distance d is expressed in km): 

 

3.2258.7 65.035.0)(
dd

G
eed

−−

+=ρ  (6) 

 

Distance (km)

ρ
 in

d
e
x

 

 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Average ρ for clouds (MODIS data)

Average ρ for rain (NIMROD data)

 

Fig. 8. Average decorrelation with distance of the integrated cloud liquid 

water calculated from MODIS data (light gray dashed line) and of rainfall 

calculated from NIMROD data (black solid line with circles, results extracted 

from [18]). Also depicted is the spread of ρ around its average value (gray 

scale density scatter plot, higher concentration in darker areas). 

IV.  HORIZONTAL CLOUD FIELDS SYNTHESIS 

Based on the expressions in (2), the horizontal cloud field 

synthesis in a target area can be achieved from the knowledge 

of EL and f. In turn, this information can be extracted from 

NWP products; in this work, we made reference to the 

ECMWF ERA40 dataset [13]. In particular, we extracted EL 

and f with temporal sampling of 6 hours (i.e. nearly 

instantaneous values every 6 hours) and spatial resolutions of 

2°×2° (latitude×longitude) respectively, the latter 

approximately corresponding to 200 km×200 km in Europe. 

The procedure consists in the following steps: 
 

1. From the ERA40 database, extract the fractional cloud 

cover (fERA) and the spatial average of the integrated cloud 

liquid water (LERA). For a given site with coordinates (lat, 

lon), fERA and LERA will result from the bilinear interpolation 

of the values relative to the four surrounding grid pixels, as 

suggested by the ECMWF. Thus EL = LERA and f = fERA. 
 

2. From EL, derive µp and σp as from the expressions in (2), 

which completely define p(SL|EL). 
 

3. Randomly extract SL from the lognormal distribution 

p(SL|EL) derived at step 2. As a result, SL values associated 

to consecutive EL (= LERA) and f (= fERA) samples will be 

uncorrelated. 
 

4. Generate a random Gaussian field g(x,y) with the spatial 

correlation ρG in (6) according to the procedure outlined in 

[12]. 
 

5. Calculate µLN and σLN of the lognormal distribution 

characterizing the cloud map to be generated (obviously 

for L > 0 mm), by inverting the following equation system: 
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Whilst EL and SL come from the NWP database, the right-

hand sides of the equations in (7) express the mean and 

standard deviation values of a mixed random variable 

whose value is 0 with probability 1-f (cloud free fraction 

of the map) and is extracted from a lognormal distribution 

(with parameters µLN and σLN) with probability f. 

Thus, the explicit expressions for µLN and σLN are: 
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6. Turn the Gaussian field g(x,y) into a lognormal (cloud) 

field C(x,y) according to: 
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where )2(erfc2 1
fg

th

−=  and erfc is the complementary 

error function. 

 

As a result, SMOC allows to generate horizontal cloud 

fields (random lognormal fields) maintaining the basic integral 

information (fERA and LERA) and reproducing the spatial 

correlation observed in real cloud fields. Fig. 9 shows a sample 

synthetic cloud field (L in mm) reflecting the input values 

extracted from the ERA40 database with high accuracy (fERA = 

0.76 and LERA = 0.2 mm): considering the generation of 

approximately 7300 synthetic fields, the root mean square 
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value of the relative percentage error in reproducing fERA and 

LERA (definition as in (3)) is 0.1% and 3.2%, respectively.  
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Fig. 9. Example of a cloud field generated by SMOC starting from ERA40 

data with 2°×2° spatial resolution and 6-hour temporal resolution. 

  

V. VERTICAL DEVELOPMENT OF CLOUDS  

To investigate the vertical profile of clouds, we have taken 

advantage of the data collected by the NASA Earth 

Observation Satellite CloudSat. Launched in 2006, the LEO 

satellite orbits in formation as part of the A-Train constellation 

(Aqua, CloudSat, CALIPSO, PARASOL and Aura satellites) 

and features a 94-GHz nadir-looking radar (Cloud Profiling 

Radar, CPR) designed to observe clouds and precipitation 

from space. As an advantage over passive sensors on-board 

EO satellites for cloud monitoring, CPR allows to measure, 

with high spatial detail (the footprint is 1.4 km×1.7 km and the 

vertical profile is sampled every 240 m), the full distribution of 

the liquid water content w(h) in clouds between the surface 

and 25 km of altitude [19].  

We focused on the 2B-CWC-RVOD product developed and 

distributed by the Cooperative Institute for Research in the 

Atmosphere (CIRA) at the Colorado State University [20]. 

Indeed, these data are expected to maximize the accuracy in 

estimating w(h) because, besides standard calibration and 

quality checks common to all 2B Level Products, 2B-CWC-

RVOD data originate from the combination of CPR-derived 

profiles and from the concurrent Visible Optical Depth 

measurements collected by the MODIS sensor that is part of 

the A-Train constellation as well [20]. 

The processing of a full year (2009) of CloudSat data 

collected over Europe allowed to identify and isolate more 

than 50000 single cloud vertical profiles (we assume 

hereinafter that only one cloud is prevailing over the target 

area, as clearly shown by CloudSat-derived profiles of w(h)), 

two examples of which are shown in Fig. 10: data in the left 

graph, associated to a low cloud of rather limited vertical 

extent, were collected over Romania in January, whilst the 

right graph shows a much thicker cloud lying over Southern 

Italy in June (black solid lines with circles). 

The preliminary visual inspection of CloudSat-derived 

profiles pointed out that, for most clouds, the trend of w(h) 

with height is asymmetric (the peak value of the liquid water 

content being typically closer to the cloud base) and that, as in 

the sample Fig. 10, profiles slowly decay to zero with 

increasing height. According to these features, we have 

selected the following analytical expression to model w(h)  (h 

km a.m.s.l.): 

 

        
( ) ( )








<

≥−
Γ=

−−−

0

0

/1

0

for0

for
)()(~

0

hh

hhehh
ab

L

hw
bhha

a    (10) 

 

In (10), a and b are parameters regulating the shape of 

)(~ hw , h0 is the cloud base height (addressed later on in this 

section), Γ  is the Gamma function and L is the integrated 

liquid water content of the cloud. As a matter of fact, the 

analytical expression in (10) resembles the Gamma probability 

density function (PDF), the only difference being that its 

integral from 0 to infinity is L instead of 1. The choice of (10) 

allows to easily constrain the analytical profile to a given 

integrated liquid water content L but the expression needs to 

be truncated to model real clouds (in fact )(~ hw � 0 g/m
3
 only 

for h � +∞): we set )(~ hw  = 0 for 
th

whw <)(~ . In order to 

identify the optimum value for wth and, more in general, to 

investigate in detail the vertical distribution of w(h), each 

cloud in the database has been characterized in terms of L and 

in terms of the best set of a and b parameters maximizing the 

agreement between the measured profile and (10) (see Fig. 

10). The overall assessment of (10) to model clouds indicates 

that the average (over the whole database) root mean square 

value of the error )()(~)( hwhwh
w

−=ε  is 0.038 g/m
3
, a good 

score considering, as a reference, that the average value of 

w(h) is approximately 0.16 g/m
3
. These results are achieved by 

setting wth = 0.06L, a good trade-off between maximizing the 

accuracy in the cloud thickness D estimate (considering the 

whole cloud database, the mean and root mean square values 

of the relative error DDD
h

/)
~

(100 −=
∆

ε  are 3.1% and 15.2%, 

respectively) and minimizing the underestimation of L caused 

by the truncation of the profile (considering L values ranging 

from 10
-3

 to 2.5 mm, the mean and root mean square values of 

the relative error LLL
L

/)
~

(100 −=ε  are -4.6% and 4.8%, 

respectively). The latter constrain has been privileged in 

determining wth because of its direct impact on the future use 

of SMOC to predict cloud attenuation induced on 

electromagnetic waves. 
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Fig. 10. Sample vertical profiles of the liquid water content w(h) as measured 

by the CPR on-board the CloudSat satellite and as estimated using the 

expression in (10); left side: profile collected over Romania in January 2009, 

right side: profile collected over Southern Italy in June 2009. 

 

Fig. 11 depicts the density scatter plot (gray scale, higher 

concentration in darker areas) between the cloud liquid water 

content L and the parameter a; data indicate that the 

probability of occurrence is higher for “light” clouds (L 

roughly lower than 0.2 mm), and that the regression curve 

between L and a is (white line with circles):  

 

           71.112.5427.4
)06.0(25.61)06.0(93.4 ++= +−+− LL

eea  (11) 

 

Similarly, the relationship between a and b, reported in Fig. 

12 again in terms of density scatter plot (gray scale), is (white 

line with circles): 

 

           074.017.3 04.3 += −
ab  (12) 

 

As a result, from the knowledge of L and exploiting (11) 

and (12) to estimate a and b in (10), a realistic cloud vertical 

profile can be derived for each of the pixels in the synthetic 

maps of L generated by SMOC. 

The final information we need is the cloud base height h0. 

We assume that the base height of all the clouds in a target 

area is fairly constant; the values of h0 have been extracted 

from the CloudSat vertical profiles of w(h) too: Fig. 13 shows 

the PDF of h0 (km a.m.s.l.), as well as the fitting generalized 

extreme value distribution (shape parameter ξ = 0.484, scale 

parameter σ = 0.582 and location parameter µ = 0.987). Data 

indicate that most cloud bases lie around h0 = 1 km, which is 

expected by the prevalence of stratiform clouds in Europe with 

rather limited integrated liquid water content (see the darker 

area in the density scatter plot of Fig. 11). 
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Fig. 11. Relationship between L and a in (10): density scatter plot (gray scale, 

higher concentration in darker areas) based on CloudSat data and regression 

curve (white line with circles). 
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Fig. 12. Relationship between a and b in (10): density scatter plot (gray scale, 

higher concentration in darker areas) based on CloudSat data and regression 

curve (white line with circles). 

 

As an example of the application of SMOC, Fig. 14 depicts 

the spatial distribution of w(h) relative to the synthetic map of 

L shown in Fig. 9. Specifically, the data depicted in the bottom 

graph refer to the y/h plane for x = 70 km with h0 = 1 km, 

whilst the top graph reports the associated integrated liquid 

water content L as a function of y. According to the model, the 

highest L values in the map are associated to thicker clouds 

characterized by large liquid water contents; moreover, the 

fractional cloud cover varies with the height, as it is typically 

the case of real cloud fields. 
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Fig. 13. Probability density function of h0, the cloud base height, derived 

from the lowermost cloud of each CloudSat profile. Empirical data and MLE 

generalized extreme value distribution. 

 
 

y (km)

h
 (

k
m

)

 

 

0 25 50 75 100 125 150 175 200
0

1

2

3

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

L
 (

m
m

)

x = 70 km

w (g/m3)

 
 
Fig. 14. Spatial distribution of w calculated by means of (10), (11) and (12) 

starting from the SMOC synthetic map of L shown in Fig. 9. Bottom graph: w 

on the y/h plane for x = 70 km; top graph: associated integrated liquid water 

content L as a function of y. 

VI. VALIDATION OF SMOC 

To validate SMOC, the full time series of fERA and LERA in 

the period 1996-2000 have been used. Approximately 7300 

cloud fields have been generated and processed to calculate 

first- and second-order statistics of L. Concerning the former, 

the well documented quasi-ergodicity property of rain fields 

has been extended to clouds, which implies that all L values of 

each map have been included in the Complementary 

Cumulative Distribution Function (CCDF) of L [21],[22]. 

As reference statistics of L for the performance assessment 

of SMOC, we have exploited an extensive set of RAOBS data 

collected routinely twice a day for ten years (1980-1989) in 14 

sites subject to very different climates (refer to Fig. 15 where 

the sites are indicated as circles). Specifically, temperature, 

pressure and relative humidity profiles have been used to 

derive the liquid water content (hence L) by means of the 

already mentioned TKK cloud detection algorithm [6]. 
 

 
Fig. 15. Sites where RAOBS data have been collected. 

 

As an example, Fig. 16 compares the CCDF of L estimated 

from SMOC with the one obtained from the RAOBS data 

collected at Milano Linate airport. Despite the two datasets are 

neither concurrent nor of the same duration, the comparison in 

Fig. 16 is meaningful because the analysis of RAOBS data 

revealed that 5 years are sufficient for the CCDF of L to 

practically be long-term representative.  
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Fig. 16. Validation of SMOC against RAOBS data collected at Milano Linate 

airport (1980-1989) coupled with the TKK model. Input values to SMOC are 

fERA and LERA and values extracted from the ERA40 database (1996-2000). 

 

The good agreement between the two curves in Fig. 16 is 

quantified in the figure legend, which reports the average (Eψ) 

and root mean square (RMSψ) values of the error ψ 

(P ≥ 5×10
-3

), defined as:  

 

)()()( PLPLP
RE

−=ψ   (13) 

 

In (13), LE(P) and LR(P) represent the estimated and 

reference integrated cloud liquid water contents, respectively, 

relative to the same probability level P. 

Fig. 17 extends the prediction accuracy assessment by 

reporting Eψ and RMSψ for all the 14 European sites where 

RAOBS data are available (as in Fig. 16, P ranges between 
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5×10
-3

 and 1). Results in Fig. 17 show that SMOC achieves an 

overall good accuracy in predicting first-order statistics of L, 

being the results dependent both on the mathematical 

formulation of the model and on the input fERA and LERA. 

Although not shown here for brevity’s sake, the analysis on the 

model’s input values indicates that the largest prediction errors 

reported in Fig. 17 (i.e. site 4, Hemsby – UK, and site 14, 

Moscow – Russia) are mainly associated to the 

underestimation of LERA. On the other hand, SMOC is not 

univocally tied to the ERA40 database; indeed, the model can 

receive the inputs from any (possibly more accurate) 

meteorological database including gridded values of fractional 

cloud cover and average integrated liquid water content. 
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Fig. 17. Validation of SMOC against all RAOBS data available (1980-1989) 

coupled with the TKK model: first-order statistics. Input values to SMOC are 

fERA and LERA values extracted from the ERA40 database (1996-2000). 

 

The ability of SMOC in reproducing the spatial distribution 

of L was tested with reference to the average decorrelation 

trend (ρ as defined in (4)) extracted from MODIS data as in 

Fig. 8. Fig. 18 compares such a trend (large black dashed line) 

with all the ones associated to the synthetic cloud fields 

generated by SMOC for the above 14 European sites (thin gray 

lines). Differences in ρ from site to site are plausible because 

of the different type of clouds occurring at different sites: the 

least and the most steep curves are associated to Stornway 

(UK, latitude = 58.13° N, longitude = -6.59° E) and Cagliari 

(IT, latitude = 39.15° N, longitude = 9.03° E), respectively 

experiencing mostly stratiform-like (large horizontal extent 

and low total liquid water content) and cumulus-like clouds 

(limited horizontal extent and high total liquid water content). 

Overall, the agreement between the MODIS curve and the 

average decorrelation trend obtained from SMOC (dashed 

gray line) is very good. 
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Fig. 18. Validation of SMOC against MODIS data: second-order statistics. 

Input values to SMOC are fERA and LERA values extracted from the ERA40 

database (1996-2000). 

VII. CONCLUSIONS 

This contribution presents SMOC (Stochastic Model Of 

Clouds), a methodology to synthesize 3-D spatially correlated 

cloud fields in temperate regions (as wide as 200 km×200 km 

and with horizontal 1 km×1 km resolution) from Numerical 

Weather Prediction (NWP) products (reanalysis or forecasts), 

i.e. the fractional cloud coverage f and the average cloud liquid 

water content EL, both relative to the target area of interest. 

SMOC relies on the stochastic approach originally proposed 

by Bell and its internal parameters have been determined from 

high-resolution cloud fields observed by the MODIS sensor 

over Europe. The analysis of such dataset revealed that L 

values tend to be lognormally distributed in each cloud map 

and that clouds are much more correlated in space than rainfall 

(at 100 km distance, the spatial correlation index ρ is roughly 

0.4 and 0.15 for the former and the latter, respectively). 

Moreover, a large set of liquid water content profiles collected 

by the CPR on-board the CloudSat satellite was used to devise 

a simple yet effective model for the vertical development of 

clouds; profiles of liquid water content w(h) follow an 

analytical expression that resembles the Gamma probability 

density function and whose parameters directly depend on L. 

The model’s accuracy has been evaluated against 

radiosonde data collected in 14 sites spanning from Northern 

(Sodankyla, Finland) to Southern (Trapani, Italy) Europe: 

overall, predicted CCDFs of L are in good agreement with the 

ones estimated from the RAOBS data used as input to the 

TKK cloud detection model (considering all sites, average root 

mean square of the error on the CCDF of L equal to 0.09 mm). 

Moreover, whilst the average spatial correlation characterizing 

the synthetic cloud fields generated by SMOC fairly well 

reproduces the one derived from the MODIS database, the 

trend of ρ with distance in SMOC maps varies from site to site 

because of the different type of clouds expected to occur. This 

points out the ability of SMOC to reflect the main local 

features of clouds inherently embedded in the ERA40 data, 

which, anyway, represent only one of the possible datasets that 

inputs to SMOC can be extracted from (e.g. also forecast data 
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could be employed). Moreover, SMOC is flexible as its 

parameterization might be changed (if necessary) to extend its 

validity also to tropical/equatorial regions, which, in 

comparison to temperate regions, are more frequently subject 

to cumulus clouds with higher liquid water content. 

SMOC represents a basic block of a simulator of weather 

disturbances affecting radio wave propagation, primarily 

intended to support the design and performance assessment of 

Earth-space Communication Systems (EHF range or at optical 

wavelengths) but also of possible interest for all the 

applications involving radiative transfer in the atmosphere. 

ACKNOWLEDGMENT 

This effort was partially sponsored by the Air Force Office 

of Scientific Research, Air Force Material Command, USAF, 

under grant number FA8655-13-1-3081. The U.S Government 

is authorized to reproduce and distribute reprints for 

Governmental purpose notwithstanding any copyright notation 

thereon. The authors would also like to acknowledge: the 

MODIS and CloudSat mission scientists and associated NASA 

personnel for the production of the data used in this work; the 

ECMWF for granting access to the cloud dataset included in 

the ERA40 database; Dr. Martellucci from the European Space 

Agency for the provision of radiosonde data. 

REFERENCES 

[1] R. K. Crane, “Electromagnetic Wave Propagation Through Rain,” 
Wiley, 1996. 

[2] L. Luini, R. Nebuloni, C. Capsoni, “Effectiveness of Multisite Diversity 
Schemes to Support Optical Systems in Scientific Missions,” Optical 

Engineering, 53 (2), 026104 (Feb 18, 2014). 

[3] E. Altshuler, R. Marr, “Cloud attenuation at millimetre wavelengths,” 
IEEE Transactions On Antennas and Propagation, 37, 1473-1479, 
1989. 

[4] F. Dintelmann, G. Ortgies, “Semi-empirical model for cloud attenuation 
prediction,” Electron. Lett., 25, 1487-1479, 1989. 

[5] A. Dissanayake, J. Allnutt, F. Haidara, “Cloud attenuation modelling for 
SHF and EHF applications,” Int. J. Satell. Commun. 2001; 19:335-345. 

[6] E. Salonen, S. Uppala, “New prediction method of cloud attenuation,” 
Electron. Lett., vol. 27, no. 12, pp. 1106–1108, Jun. 1991. 

[7] Attenuation due to clouds and fog. Geneva, 2013, ITU-R 
recommendation P.840-6. 

[8] H. J. Liebe, “MPM - An atmospheric millimeter-wave propagation 
model,” Int. J. Infrared and Millimeter Waves, 1989, 10, pp. 631450. 

[9] L. Luini, C. Capsoni, “A Rain Cell Model for the Simulation and 
Performance Evaluation of Site Diversity Schemes,” IEEE Antennas 

and Wireless Propagation Letters, Vol. 12, No. 1, Page(s): 1327-1330, 
2013. 

[10] ESA/ESTEC/Contract 17760/03/NL/JA, “Characterisation and 
Modelling of Propagation Effects in 20-50 GHz Band: Final Report,” 
Volume 4592 di ESA CR, 2006. 

[11] P. Garcia, A. Benarroch, J. M. Riera, “Spatial distribution of cloud 
cover,” Int. J. Satell. Commun. 2008; 26:141–155. 

[12] T. L. Bell, “A Space-Time Stochastic Model of Rainfall for Satellite 
Remote-Sensing Studies,” Journal Of Geophysical Research, Vol. 92, 
No. D8, pp. 9631-9643, 1987. 

[13] S. M. Uppala, P. W. Kallberg, et al., “The ERA-40 Re-analysis,” Quart. 

J. Roy. Meteor. Soc., 131, pp. 2961-3012, 2005. 

[14] X. Xiong, W. Barnes, “An Overview of MODIS Radiometric 
Calibration and Characterization,” Adv. Atmos. Sci., vol. 23, issue 1, pp. 
69-79, 2006. 

[15] Members of the MODIS Characterization Support Team, “MODIS 
Level 1B Product User’s Guide,” July 20, 2012, available online at 
http://mcst.gsfc.nasa.gov/sites/mcst.gsfc/files/file_attachments/M1054D
_PUG_083112_final.pdf. 

[16] C. Lynnes, R. Strub, E. Seiler, T. Joshi, P. MacHarrie, “Mirador: A 
Simple Fast Search Interface for Global Remote Sensing Data Sets,” 
IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 1, 
pp. 92-96, Jan. 2009. 

[17] L. Luini, C. Capsoni, “On the Relationship Between the Spatial 
Correlation of Point Rain Rate and of Rain Attenuation on Earth-Space 
Radio Links,” IEEE Transactions on Antennas and Propagation, vol. 
61, no. 10, Page(s): 5255 - 5263, October 2013. 

[18] L. Luini, C. Capsoni, “The Impact of Space and Time Averaging on The 
Spatial Correlation of Rainfall,” Radio Sci., 47, RS3013, 
doi:10.1029/2011RS004915, 2012. 

[19] G. L. Stephens, D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. 
Wang, A. J. Illingworth, E. J. O'Connor, W. B. Rossow, S. L. Durden, S. 
D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, the CloudSat Science 
Team, “The CloudSat mission and the A-TRAIN: A new dimension to 
space-based observations of clouds and precipitation,” 2002, Bull. Am. 

Met. Soc., 83, 1771-1790. 

[20] N. Wood, “Level 2B Radar-Visible Optical Depth Cloud Water Content 
(2B-CWC-RVOD) Process Description Document,” CloudSat project, 
Version 5.1, 23 October 2008; available online at 
http://www.cloudsat.cira.colostate.edu/ICD/2B-CWC-RVOD/2B-CWC-
RVOD_PDD_V5p1.pdf  

[21] L. Luini, C. Capsoni, “MultiEXCELL: a new rain field model for 
propagation applications,” IEEE Transactions on Antennas and 

Propagation, vol. 59, no. 11, Page(s): 4286 – 4300, November 2011. 

[22] E. A. B. Eltahir, R. L. Bras, “Estimation of the fractional coverage of 
rainfall in climate models,” J. Climate, vol. 6, pp. 639–644, 1993. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TAP.2014.2341297

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


