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Abstract— SMOV (Stochastic MOdel of water Vapor), a 

methodology to generate realistic three-dimensional spatially 

correlated water vapor fields is presented, which is devised by 

investigating remote sensing observations acquired by the 

MODIS sensor (Aqua satellite). Synthetic water vapor fields are 

200 km×200 km, with 1 km×1 km horizontal spatial resolution, 

while the water vapor content v extends up to 20 km with a 

vertical sampling of 100 m. The field synthesis relies on the 

stochastic approach proposed by Bell and requires as input the 

average integrated water vapor content provided with coarse 

spatial and temporal resolution by NWP products. The vertical 

profile of v is modelled as a simple exponential function 

decreasing with height, as observed from typical RAOBS and 

NWP data. Tests on the model’s accuracy show that both first-

order (Complementary Cumulative Distribution Function - 

CCDF) and second-order (spatial distribution) statistics of the 

integrated water vapor content are closely reproduced in several 

European sites. Results corroborate the use of SMOV as part of a 

comprehensive simulator of atmospheric impairments, which 

aims at taking into account all the constituents affecting the 

propagation of millimeter-waves in different scenarios, including 

applications involving very low elevation links such as UAVs and 

LEO satellites. 

 
Index Terms— Electromagnetic wave propagation, 

atmospheric effects, water vapor. 

 

I. INTRODUCTION 

HE last decade has been characterized by a large 

diversification and increase in millimeter-wave 

communication systems. On the one hand, new high-data rate 

interactive services, e.g. those provided via satellite to offer 

global Internet connectivity [1], are pushing towards the 

employment of higher frequency bands giving access to wider 

bandwidths (Ka band nowadays, Q/V bands as the next step 

[2]); on the other hand, new applications involving very low 

elevation links are being increasingly employed (e.g. 

Unmanned Aerial Vehicle – UAVs) or are planned to be 

implemented in the near future (e.g. Ka-band links from 

ground stations to Low Earth Orbit – LEO – satellites [3] and 
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deep-space probes [4]).  

In this context, the system design task becomes more and 

more critical, not only because the higher is the frequency, the 

larger is the detrimental impact of the atmosphere on the link 

(induced by hydrometeors, clouds and gases), but also because 

for very low elevations links (say angles smaller than 10 

degrees) specific modeling needs to be properly considered, 

such as the Earth’s curvature, the ray bending effect and the 

large-scale spatial distribution of the atmospheric constituents. 

In such scenarios, even in clear sky conditions (sole presence 

of gases in the atmosphere), the path attenuation might exceed 

several dBs (especially in tropical/equatorial sites) [5], such 

that taking in due account the modeling aspects mentioned 

above would definitely increase the accuracy of the estimated 

link performance. In order to meet these needs, the recent 

tendency in the theoretical research on millimeter-wave 

propagation is to move from empirical models, typically 

limited in their applicability to specific climatic regions, 

frequency ranges and/or scenarios, to highly sophisticated 

physically-based methodologies which inherently aim at being 

globally applicable and are sufficiently flexible to allow 

simulating with increased accuracy and reliability the impact 

of the atmosphere on several different millimeter-wave 

communication systems. 

This contribution presents the development and assessment 

of SMOV (Stochastic MOdel of water Vapor), a methodology 

to synthesize statistically meaningful sets of three-dimensional 

(3-D) water vapor fields. SMOV represents a key element, 

which, together with MultiEXCELL (for precipitation) [6] and 

SMOC (for clouds) [7], contributes to the development of a 

comprehensive simulator of weather disturbances affecting the 

propagation of millimeter-waves [8]. SMOV reproduces the 

spatial distribution of the water vapor content v (this 

abbreviation − in place of the more common WVC − is used 

throughout this contribution in order to deal with more 

compact equations) with high resolution across large areas 

(200 km×200 km×20 km with 1 km×1 km horizontal detail 

and 100 m vertical sampling) starting from the generation of 

spatially correlated Gaussian fields, as explained in [9]. To this 

aim, the model relies on some key information on v extracted 

from the water vapor fields observed by the MODIS sensor 

onboard the Aqua satellite. Inputs to SMOV are the time series 

of the integrated water vapor content V (as for v, this 

abbreviation is preferred here to the more customary – yet less 

compact − IWVC), part of Numerical Weather Prediction 

Modeling and Synthesis of 3-D Water Vapor 

Fields for EM Wave Propagation Applications 

Lorenzo Luini, Member, IEEE 

T 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2016.2591062

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

mailto:lorenzo.luini@polimi.it


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

(NWP) data provided e.g. by the European Centre for 

Medium-range Weather Forecast (ECMWF) over a low-

resolution latitude×longitude grid (1.125°×1.125°) every 6 

hours. The remainder of the paper is organized as follows: 

Sections II and III deals with the investigation and modeling of 

the horizontal and vertical distribution of water vapor, 

respectively, while Section IV describes in detail the 

procedure for the synthesis of realistic 3-D water vapor fields. 

Tests to evaluate the accuracy of SMOV in reproducing first- 

and second-order statistics of V are shown in Section V and, 

finally, Section VI draws some conclusions. 

II. HORIZONTAL DISTRIBUTION OF WATER VAPOR  

A. The reference water vapor dataset  

The reference water vapor database used in this work 

originates from the MODIS sensor onboard the Aqua satellite, 

which flies along Low Earth Orbit (LEO) orbit covering the 

whole Globe with a repetition period of approximately two 

days. The MODIS instrument, whose main aim is to observe 

large-scale global dynamics of oceanic and tropospheric 

processes, collects radiance data in 36 optical channels 

(wavelengths between 0.4 and 14.4 µm) with high spatial 

resolution (from 250 m to 5 km footprint, linear size) 

implementing automatic in-flight calibration procedures [10]. 

Raw data are processed by the MODIS Characterization 

Support Team (MCST) to provide high quality calibrated 

products for several Earth science applications [11]. 

Specifically, maps of V with dimensions of 200 km×2000 

km and spatial resolution of 5 km×5 km, appropriate to 

adequately sample the spatial distribution of water vapor, are 

freely available on the web for research purposes. In 

particular, in this work, we have employed the maps derived 

from 3090 swaths over Europe (20° E ≤ latitude ≤ 62° E and 

10° W ≤ longitude ≤ 37° E) in 2010. As an example, Fig. 1 

depicts the integrated water vapor content as observed by 

MODIS along a swath over Africa and Europe. Furthermore 

Fig. 2 depicts the Complementary Cumulative Distribution 

Function (CCDF) of the integrated water vapor as obtained 

from an extensive dataset of radiosonde observations 

(RAOBS) collected at Milano Linate airport between 1980 and 

1989 and as extracted from MODIS data in the same area (100 

km×100 km centered over the airport). The satisfactory 

agreement between the two curves gives a hint on the good 

quality of MODIS-derived water vapor data.  

 

 
Fig. 1. Example of the spatial distribution of integrated water vapor V, as 

observed by MODIS on a swath over Africa and Europe. 

 

 
Fig. 2. CCDF of the integrated water vapor as obtained from an extensive 

dataset of radiosonde observations collected at Milano Linate airport between 

1980 and 1989 (red dashed line) and as extracted from MODIS data in the 

same area (100 km×100 km centered over the airport). 

B. Characterization of water vapor horizontal distribution 

As a first step to investigate the key properties of water 

vapor fields, we have partitioned the large swaths into 200 

km×200 km maps to achieve dimensions typical of Numerical 

Weather Prediction (NWP) products such as 2°×2° 

latitude/longitude. 

The analysis of the horizontal distribution of the integrated 

water vapor content within each 200 km×200 km map showed 

that the values of V tend to follow the Weibull distribution: 

 
1

( ) exp
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 (1) 

 

where AW and BW are the scale and shape parameters, 

respectively, regulating the expression in (1). This finding 

confirms what is discussed in [12] and is clearly exemplified in 

Fig. 3, where a sample water vapor field observed by MODIS 

(top) and the associated statistical characterization of V 

(bottom) is provided in terms of Cumulative Distribution 

Function (CDF). The bottom figure title reports EV, the value 

of V averaged over the whole area, as well as W and W of the 

Weibull distribution fitting data with good accuracy 

(maximum likelihood estimation - MLE). This is quantified by 

E and RMS in the figure legend, i.e. the average and root 

mean square values, respectively, of the error figure  defined 
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as: 
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 In (2), Vm(P) and Vf(P) are the V values (mm) associated to 

the reference (MODIS) and MLE CDFs, respectively, at 

probability levels P ranging from 0 to 1 with step of 0.001. 

 

 
 

 

 
Fig. 3. Sample MODIS water vapor field (top) and statistical characterization 

of V (bottom). 

 

Considering the whole MODIS dataset, Fig. 4 depicts the 

trend of the average E (solid line with triangles) and RMS 

(dashed line with stars) as a function of EV, together with the 

percentage number of MODIS maps falling in each EV class 

(blue bars). As it turns out, EV is distributed according to the 

Weibull distribution, and, in addition, results confirm that in 

each map V tends to closely follow the same distribution, 

being the fitting slightly more accurate for larger values of EV. 

 
Fig. 4. Trend of the average E (solid line with triangles) and RMS (dashed 

line with stars) as a function of the average integrated water vapor content EV, 

together with the percentage number of MODIS fields considered in each EV 

class (blue bars). 

 

All the MODIS-derived 200 km×200 km maps were 

afterwards processed to identify possible relationships of EV 

with AW and BW. As for the former, AW was found to be 

proportional to EV, with the very high linear correlation shown 

in Fig. 5 (see the inset in the figure for more details): 

 

1.044
W V

A E  (3) 

 

 
Fig. 5. Relationship between AW and EV. 

 

Concerning the second parameter of the Weibull 

distribution, as shown in Fig. 6, the scatterplot between EV and 

BW turned out to be rather spread, which prevents from 

defining a simple analytical expression relating the two 

quantities. On the other hand, the conditional lognormal 

probability density function p(BW|EV) in (4) was found to be 

well suited for modeling the statistical relationship between BW 

and EV: 
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where  and , which are both function of EV, are the mean 

and standard deviation values of the natural logarithm of BW, 

respectively. A hint of the modeling accuracy of (4) is given 

by Fig. 7, which depicts p(BW|EV) for two classes of EV (low 

values on the top and high values on the bottom), including  

and  of the fitting MLE lognormal distribution. 

 

 
Fig. 6. Scatterplot between BW and EV. 

 

 

 
Fig. 7. Examples of p(BW|EV), the statistical distribution of BW conditioned to 

EV; low and high values of EV on the top and bottom side, respectively. 

Empirical data and MLE lognormal distributions. 

 

For the complete characterization of p(BW|EV), we have 

defined eight EV bins of different width but containing roughly 

the same number of samples (NS ≈ 3000). The maximum error 

in fitting the empirical p(BW|EV) with the MLE lognormal 

distributions (specifically, root mean square values of the 

percentage relative difference error) is 8%. In addition, as can 

be inferred from Fig. 8 and Fig. 9, both  and  show quite a 

regular trend with EV (blue squares indicate the center values 

of each class), which can be closely approximated by the 

following analytical expressions: 

 

 

 

0.239 0.097

0.156 0.06

1.408 6.885 3.725

2.228 6.66 3.962

V V V

V V V
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E E E





   

   
 (5) 

 

 

 
Fig. 8. Trend of  with EV. 

 

 
Fig. 9. Trend  with EV. 

 

The additional information needed to generate synthetic 

water vapor fields concerns the spatial variability of V, which 

was studied by resorting to the correlation index  [13]: 

 

     
   

E ( ) ( ) E ( ) ( )
( , )

( ) ( )

V V V E V

V V


 

 


x y x y
x y

x y
 (6) 

 

E[•] and [•] in (6) indicate the mean and standard 

deviation, whereas ( )V x  and ( )V y  represent the integrated 

water vapor content time series, respectively associated to 

pixels x  and y  in each 200 km×200 km water vapor map. An 

underlying assumption in the calculation of  is the spatial 

stationarity of the water vapor (also valid for precipitation 

[13]); this entails that the spatial correlation between two 

points depends (mostly) on their distance and only marginally 

on their position, i.e.: 
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)(),( yxyx  d  (7) 

 

Fig. 10 shows the spatial correlation of V calculated by 

averaging  values associated to pairs of pixels at the same 

distance d (red line): besides showing that the water vapor 

decorrelates slowly with distance, the limited spread of  

around its average value (density scatter plot, higher 

concentration in darker areas) definitely validates the spatial 

stationarity assumption mentioned above. 

  

 
Fig. 10. Decorrelation with distance of the integrated water vapor content 

calculated from MODIS data (red dashed line). Also depicted is the spread of 

 around its average value (gray scale density scatter plot, higher 

concentration in darker areas). 

 

In order to synthesize realistic water vapor fields according 

to [9], random Gaussian fields with spatial correlation G(d), 

to be known a priori, need to be first generated. The mean 

G(d) can be estimated by first converting each MODIS water 

vapor field into a Gaussian field, which, under the assumption 

of Weibull distribution for V, corresponds to employing (14) 

and (15) reported in Section III below. Afterwards the spatial 

correlation of the random Gaussian process was evaluated 

from converted maps using the same definition of  as in (6) 

and assuming again spatial stationarity. The resulting average 

G(d) is well fitted by the following analytical expression: 

 

232.56 71.43( ) 1.656 0.337 0.319
d d

G
d e e

 

    (8) 

 

where d is expressed in km. 

III. VERTICAL DEVELOPMENT OF WATER VAPOR  

As can be inferred from RAOBS and NWP data [14], the 

vertical profile of water vapor density v follows a fairly regular 

trend, which is typically modeled using the following 

exponential profile:  

 
/( ) Vh h

G
v h v e  (9) 

 

In (9), vG is the water vapor content at sea level (g/m
3
) and 

hV is the exponential decay rate, also known as water vapor 

scale height. An example of a typical vertical profile of the 

water vapor density is shown in Fig. 11: the black curve comes 

from the data measured by the radiosonde launched in Milano 

Linate airport, Italy, while the red line is obtained from fitting 

(9) to such data (in this case vG = 2.6 g/m
3
 and hV = 1.48 km). 

 

 
Fig. 11. Typical profile of the water vapor density v with height (data from the 

radiosonde launched at Milano Linate airport, Italy) and associated 

exponential fit in (9), with vG = 2.6 g/m3 and hV = 1.48 km. 

 

Based on (9), if the integrated water vapor content V and 

the water vapor scale height hV are known, vG can be derived 

by imposing: 

 
20 km

/

0 km

Vh h

G
V v e dh   (10) 

 

which, inverted after simple passages, leads to: 

 

 

20 km

1 e Vh

G

V V

V V
v

h h

 
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 
 (11) 

 

The integral in (10) is calculated up to 20 km, which is 

approximately the upper limit of the troposphere; the 

approximation on the right hand side of (11) is justified by 

common values of hV, which are typically comprised roughly 

between 0.5 km and 4 km. 

As a result, starting from a V field generated by SMOV and 

knowing hV, the full three-dimensional distribution of the water 

vapor content v is given by: 

 

/( , )
( , , ) Vh h

V

V x y
v x y h e

h

  (12) 

IV.  FULL PROCEDURE FOR WATER VAPOR FIELD SYNTHESIS 

On the basis of the analysis reported in previous sections, the 

horizontal synthesis of V over the target area can be obtained 

starting from G(d) in (8), and from EV and hV. As for EV, this 

information can be derived from NWP products, such as the 

ECMWF (European Centre for Medium-range Weather 

Forecast) ERA-40 dataset: in this work, we have taken 

advantage of the area-averaged integrated water vapor content 
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VERA sampled every 6 hours and characterized by spatial 

resolution of 2°×2° (latitude×longitude), i.e. roughly 200 

km×200 km in Europe. As for hV, time series are not directly 

available in the ERA-40 database, but statistics and monthly 

average values are included in recommendation ITU-R P.836-

5 [15]. Based on these inputs, the procedure involves the 

following steps: 
 

1. Given the site of interest with coordinates (lat,lon), 

extract from the ERA-40 database times series of the 

average integrated water vapor content (VERA) and derive 

from recommendation ITU-R P.836-5 monthly mean 

values of the water vapor scale height (hV,m) associated to 

values relative to the four surrounding grid pixels. 

2. Scale the VERA values, each of which is associated to the 

reference height hERA of the ERA-40 pixel (ground), to 

derive the integrated water vapor content at the sea level 

VERA,sea. As recommended by ITU-R in P.836-5, this is 

achieved again by considering that the integrated water 

vapor decays exponentially with height, i.e.:  

 

   
,

, ,

exp expsea ERA ERA

ERA sea ERA ERA

V m V m

h h h
V V V

h h

   
        

   

 (13) 

 

3. As recommended in P.836-5, bilinearly interpolate the 

values of VERA,sea and hV,m on the site of interest with 

coordinates (lat,lon), thus obtaining V’ERA,sea and h’V,m. 

Finally EV = V’ERA,sea and hV = h’V,m. 

4. Using EV, calculate  and  as from the expressions in 

(5), which define p(BW|EV) in (4). 

5. Calculate AW from EV using the linear relationship in (3). 

6. Randomly extractObtain BW as a random draw from the 

lognormal distribution p(BW|EV) derived at step 4.   

7. Generate a random Gaussian field g(x,y) (zero mean and 

unit variance) with the spatial correlation G in (8) 

according to [9]. 

8. Convert the Gaussian field g(x,y) into a water vapor field 

(Weibull distribution) V(x,y) according to: 

 

   
1 ( , )

( , ) 1
2 2

g x y
U x y erf

  
   

  
 (14) 

    
1

( , ) ln 1 ( , ) WB

W
V x y A U x y      (15) 

 
 

Equation (14) turns the Gaussian field into a random field 

with values uniformly distributed between 0 and 1 (U), 

while equation (15) converts the uniform field into the 

target water vapor field characterized by the Weibull 

distribution with parameters AW and BW (erf is the error 

function). 

9. Derive the full spatial distribution of the water vapor 

density v using (12), which extends vertically from the 

sea level up to 20 km. 

10. Truncate the v field according to the height of the site of 

interest hstat by discarding v values for which h < hstat. 
 

Fig. 12 shows a sample field (V in mm) reflecting the input 

values extracted from the ERA-40 database (EV = 18.9 mm), 

while Fig. 13 depicts the spatial distribution of v calculated 

by means of (12) starting from the synthetic field shown in 

Fig. 12; the bottom graph reports v on the y/h plane for x = 

120 km, while the top graph shows the associated integrated 

water vapor content V as a function of y. 

 
Fig. 12. Sample water vapor field generated by SMOV starting from ERA-40 

data with 2°×2° spatial resolution and 6-hour temporal resolution. 

 
Fig. 13. Spatial distribution of v calculated by means of (12) starting from the 

field of V shown in Fig. 12. Bottom graph: v on the y/h plane for x = 120 km; 

top graph: associated integrated water vapor content V as a function of y. 

V. VALIDATION OF SMOV 

A. Accuracy in reproducing realistic water vapor fields 

In order to test SMOV, using as input the ERA-40 time 

series of VERA in the period 1996-2000, we have calculated 

first- and second-order statistics of V starting from 7308 

synthetic water vapor fields (200 km×200 km×20 km with 1 

km×1 km horizontal detail and 100 m vertical sampling)(time 
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series of VERA in the period 1996-2000). The reference 

statistics of V used to assess the performance of SMOV were 

derived for 14 European sites where extensive RAOBS data 

were collected (and whose accuracy was duly checked) for 10 

years (1980-1989): specifically the sites span very different 

climatic regions, from Sodankyla in Finland to Trapani in 

Southern Italy [16]. 

As an example, Fig. 14 compares the CCDF of V estimated 

from SMOV with the one obtained from the RAOBS data 

collected in De Bilt, The Netherlands. 

 

 
Fig. 14. Validation of SMOV against RAOBS data collected in De Bilt, The 

Netherlands (1980-1989). Input values to SMOV are VERA values extracted 

from the ERA-40 database in the period 1996-2000. 

 

The good agreement between the two curves in Fig. 14 is 

quantified in the figure legend, which includes the average 

(Eψ) and root mean square (RMSψ) values of the error ψ 

(P ≥ 5×10
-3

), defined as:  

 

( ) ( ) ( )
E R

P V P V P     (16) 

 

In (16), VE(P) and VR(P) are the predicted and reference 

integrated water vapor contents, respectively, associated to the 

same probability level P. 

Fig. 15 extends the prediction accuracy assessment to the 

whole set of 14 sites (as in Fig. 14, for the calculation of Eψ 

and RMSψ, P ranges between 5×10
-3

 and 1). Results in Fig. 15 

show that SMOV achieves an overall very good accuracy in 

modeling first-order statistics of V. 

The ability of SMOV in reproducing the spatial 

distribution of V was evaluated against the average 

decorrelation trend ( as defined in (6)) extracted from 

MODIS data. Fig. 16 compares this curve (large black dashed 

line) with all the ones associated to the synthetic water vapor 

fields generated by SMOV for the above 14 European sites 

(thin lines). The discrepancies in  from site to site (at 150 km 

the correlation index varies from 0.85 to 0.95, i.e. 

approximately 10%) reflect the different climate which the 14 

locations are subject to (typically drier in the North and more 

humid in the South). Overall, the agreement between the 

average decorrelation trend obtained from SMOV (dashed red 

line) and the MODIS curve is very good (the root mean square 

value of the relative difference between the two curves is 

0.7%). 

 

 
Fig. 15. Validation of SMOV against all RAOBS data available: first-order 

statistics. Input values to SMOV are VERA values extracted from the ERA-40 

database (1996-2000). 

 

 
Fig. 16. Validation of SMOV against MODIS data: second-order statistics. 

Input values to SMOV are VERA values extracted from the ERA-40 database 

(1996-2000). 

VI.  ATTENUATION INDUCED BY WATER VAPOR ON EARTH-

SPACE LINKS 

This section presents some examples of the use of SMOV 

to estimate the attenuation induced by water vapor (AV) on 

Earth-space links. 

Fig. 17 shows the CCDF of AV calculated for a hypothetical 

Earth-space link between an Earth Observation (EO) satellite 

flying along a near-polar Low Earth Orbit (LEO) and a ground 

station, set in Svalbard Islands, Norway (latitude 78.75° N, 

longitude 16° E, 10 m a.m.s.l.), from which the satellite is 

often visible. The elevation angle is  = 10°, assumed here as a 

possible minimum elevation for which the satellite is tracked, 

and the link frequency is 26 GHz, a band allocated for data 

downlink in future EO missions. The path attenuation is 

calculated by first integrating v along the link to obtain the 

slant integrated water vapor content VS, and afterwards by 

employing the methodology presented in [17], according to 

which AV can be calculated from the simple knowledge of VS 

by exploiting the concept of mass absorption coefficient 

(specifically, refer to equation (7) in [17]). It is worth pointing 

out that, in order to improve the prediction accuracy and by 

taking advantage of the full 3-D spatial distribution of v, in 

calculating AV, the Earth’s curvature has been taken into 
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account (calculation according to section 2.2 of 

recommendation ITU-R P.676-10 [18]), as well as the ray 

bending effect associated to the standard atmospheric profile 

for which the gradient of the refractive index with height close 

to the ground, dn/dh, is assumed to be −40×10
-6

 km
-1

 [19]. 

Depicted in the same picture are the CCDFs of the attenuation 

due to rain (AR) and clouds (AC) as calculated according to 

ITU-R recommendation (e.g. P.840-6 for the latter [20]). For 

the selected site, results indicate that the contribution of water 

vapor is dominant for outage probabilities P higher than 3%, 

and that AV is anyway larger than AR for P ≥ 0.5%. 

 

 
Fig. 17. Prediction of the attenuation due to water vapor (using SMOV), 

clouds and rain (using ITU-R recommendations) for a site in the Svalbard 

Islands, Norway (latitude 78.75° N, longitude 16° E, 10 m a.m.s.l.). 

Frequency 26 GHz, 10° elevation angle. 

 

Contrary to the example reported in Fig. 17, in which 

tropospheric attenuation turns out to be quite limited due to the 

extremely cold climate affecting Svalbard Islands, Fig. 18 

reports much higher levels of attenuation due to water vapor, 

rain and clouds. 

 

 
Fig. 18. Prediction of the attenuation due to water vapor (using SMOV), 

clouds and rain (using ITU-R recommendations) for Lurin, Peru (latitude -

12.2° N, longitude 76.9° W, 9 m a.m.s.l.). Frequency 29 GHz, 10° elevation 

angle. 

 

This second example refers to Lurin, Peru (latitude -12.2° 

N, longitude 76.9° W, 9 m a.m.s.l.), where an O3b gateway 

operates to upload contents to the 12 Medium Earth Orbit 

(MEO) telecommunications satellite of the company [21]. The 

frequency of the link is 29 GHz, used by O3b for the uplink, 

and the elevation angle is again 10°. The gateway site is 

characterized by a rather dry climate (according to 

recommendation ITU-R P.837-6, the probability to have rain 

is 1.5% and the rain rate exceeded for 0.01% of the time is 

approximately 14 mm/h) and by fairly limited cloud coverage 

(according to recommendation ITU-R P.840-6, the probability 

to have clouds is roughly 50%), whereas, as clearly visible in 

Fig. 18, the impact of water vapor is definitely significant due 

to the tropical climate affecting the site: the water vapor 

attenuation exceeded for 0.5% of the time is around 12 dB, in 

the same order of AR. 

As a final example, Fig. 19 reports the attenuation statistics 

for a link operating at 50 GHz between the geostationary 

satellite KA-SAT (orbital position 9° E) with the EUTELSAT 

gateway installed in a site close to Turin, Italy (latitude 45.1° 

N, longitude 7.6° E, 290 m a.m.s.l.). In this case the elevation 

angle is fixed to 38.1° and AV has a much more limited 

contribution to the total attenuation.    

 

 
Fig. 19. Prediction of the attenuation due to water vapor (using SMOV), 

clouds and rain (using ITU-R recommendations) for Turin, Italy (latitude 

45.1° N, longitude 7.6° E, 290 m a.m.s.l.). Frequency 50 GHz, 38.1° 

elevation angle. 

VII. CONCLUSIONS 

This contribution presents SMOV (Stochastic Model Of 

water Vapor), a method for the synthesis of three-dimensional 

spatially correlated water vapor fields (200 km×200 km×20 

km with 1 km×1 km horizontal detail and 100 m vertical 

sampling) from Numerical Weather Prediction (NWP) 

products (reanalysis or forecasts) with coarse spatial (e.g. 

1.125°×1.125° latitude×longitude grid) and temporal 

resolution (6 hours). Fields of integrated water vapor content V 

are generated by taking advantage of the stochastic approach 

developed by Bell and SMOV main parameters were 

determined from high-resolution MODIS-derived water vapor 

fields. The data investigation pointed out that V values in each 
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map tend to follow the Weibull distribution, whose parameters 

turn out to depend on EV, the V value averaged over the target 

area. As expected the spatial correlation of V was found to 

decrease very slowly with distance (at 200 km distance, the 

spatial correlation index  is roughly 0.87). Moreover, the 

vertical development of the water vapor content v is modeled 

as a simple exponential function decreasing with height, as 

typically observed from RAOBS and NWP data. 

The model’s accuracy was tested against radiosonde data 

collected in 14 sites ranging from Northern (Sodankyla, 

Finland) to Southern (Trapani, Italy) Europe using as input to 

SMOV five years of EV time series extracted from the ERA-40 

database: predicted CCDFs of V closely reproduce the ones 

estimated from RAOBS data (overall, for all sites, the root 

mean square of the error on the CCDF of V equal to 1.4 mm). 

Moreover, the average spatial correlation characterizing 

synthetic V fields is in very good accordance with the one 

derived from the MODIS database. Finally, SMOV has been 

applied to estimate the impact of water vapor attenuation in 

three sites affected by different climates (cold, tropical and 

temperate). These All the results shown in this contribution 

corroborate the use of SMOV as part of a comprehensive 

simulator of atmospheric impairments, which aims at taking 

into account all the constituents affecting the propagation of 

millimeter-waves in different scenarios, including applications 

involving very low elevation links such as UAVs and LEO 

satellites. 
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