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Problem 1 

A plane sinusoidal EM wave propagates from free space into a medium with electric permittivity 

r2 = 3 (r2 = 1), with incidence angle i. The expression for the electric field in the first medium is:  
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For this wave: 

1) Determine i. 

2) Determine the frequency.  

3) Determine the polarization of the incident and reflected EM wave. 

4) Write the expression of the TE component of the refracted field. 

 
Solution: 

1) The incident angle can be obtained from the TM component of the field. For example: 
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2) The frequency of the incident EM wave can be derived from the phase constant. For example: 

𝛽𝑧 = 𝛽 cos 𝜃𝑖 =
2𝜋𝑓

𝑐
√𝜀𝑟1 cos 𝜃𝑖     →     𝑓 =

𝑐𝛽𝑧

2𝜋√𝜀𝑟1 cos 𝜃𝑖

= 10 GHz 

 

3) The polarization of the incident wave is RHEP (right-hand elliptical polarization) because the two 

TE and TM components have different amplitudes and a phase shift of π/2. In fact, setting y and z to 

0, and expressing the dependence on time, we can determine the electric field rotation direction: 
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Thus, making reference to the figure below that shows the reference system as seen from behind the 

wave, for t = 0 → 
0
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The incidence of the wave on the discontinuity will normally give birth to a reflected wave and a 

transmitted (refracted) wave, both for the TE and TM components. As there is a TM component, it is 

worth checking the Brewster angle B: 
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As i = B, the TM component is completely transmitted into the second medium (no reflection), 

while the TE one is partially reflected and partially refracted. In this case, the reflected wave will be 

a TE linearly polarized wave. 

 

4) First, we need to calculate the reflection coefficient for TE waves, which, in turn, requires 

calculating the refraction angle as: 
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The full expression for the refracted TE component is given by: 

𝐸⃗ 𝑡
𝑇𝐸(𝑧, 𝑦) = 𝐸⃗ 𝑡

𝑇𝐸(0,0)(1 + Γ𝑇𝐸)𝑒−𝑗𝛽2𝑐𝑜𝑠𝜃𝑡𝑧𝑒−𝑗𝛽2𝑠𝑖𝑛𝜃𝑡𝑦 = −𝑗0.994𝜇 𝑥𝑒
−𝑗312.4𝑧𝑒−𝑗184.3𝑦    V/m   

 

where 2 362.76 = rad/m. 

  



Problem 2 

A plane EM wave carries a power density of S = 10 mW/m2 in front of an antenna. The power received 

by such antenna is conveyed into the receiver RX via a lossy coaxial cable 

(𝛼𝑑𝐵 = 30 dB/km), with intrinsic impedance ZC = 75 . The antenna, whose gain is G = 10 dB, acts 

as an equivalent generator with voltage V and internal impedance ZA = 75 ; the RX, which acts as a 

load, has impedance ZRX = 100+j50 . The frequency is f = 600 MHz. The line length is 

l = 40 m. 

1. Calculate the power received by the antenna. 

2. Calculate the power absorbed by RX, PRX. 

3. With the aim of maximizing PRX, is it better to have a capacitor-like or an inductor-like 

reactive part in ZRX? 

 
Solution 

1) The power received by the antenna is the power available to the generator. The wavelength is 

 = c/f = 0.5 m, and the antenna effective area is: 

𝐴𝐸 = 𝐺
𝜆2

4𝜋
= 0.1989 m 

The received power is: 

𝑃𝐴𝑉 = 𝑆 𝐴𝐸 = 2 mW 

 

2) First, let us calculate the reflection coefficient at section AA: 

Γ𝐿 =
𝑍𝑅𝑋 − 𝑍𝐶

𝑍𝑅𝑋 + 𝑍𝐶
= 0.2075 + 𝑗0.2264 

The solution is simplified by the partial match at section BB, so the power absorbed by the load can 

be simply calculated as (only one reflection at the load section): 

𝑃𝑅𝑋 = 𝑃𝐴𝑉𝑒
−2𝛼𝑙(1 − |Γ𝐿|

2) = 1.4 mW 

where  = 3.5×10-3 Np/m. 

 

3) It is easy to verify that any reactive part in ZRX will generate an increase in Γ𝐿: the same absolute 

value of the reactive part will generate the same effect. To maximize the received power, such reactive 

part needs to be nullified. 
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Problem 3 

Let 𝑠(𝑡) be a RF signal: 𝑠(𝑡) = 𝑔(𝑡)𝑐𝑜𝑠(2𝜋𝑓0𝑡), where 𝑔(𝑡) is a short pulse with a (two-sided) 

bandwidth of 10 MHz and the carrier frequency is 𝑓0 = 100 MHz.  

1. Write the expressions of the Fourier Transform of 𝑠(𝑡) and draw a graph of the magnitude (you 

can represent |𝐺(𝑓)| as a rectangular pulse with bandwidth 𝐵). 

2. A discrete-time signal 𝑠𝑛 is obtained by sampling 𝑠(𝑡) with sampling frequency 𝑓𝑠 = 80 𝑀𝐻𝑧. 

Write the expressions of the Fourier Transform of 𝑠𝑛 and draw a graph of the magnitude. 

3. Propose a procedure for the extraction of the complex envelope (I & Q components) of 𝑠(𝑡) based 

on the sampled signal 𝑠𝑛. 

 

Solution 

 

1) 𝑆(𝑓) =
1

2
𝐺(𝑓 − 𝑓0) +

1

2
𝐺(𝑓 + 𝑓0), as resulting from the convolution between the Fourier 

Transform of g(t) (=> G(f)) and 𝑐𝑜𝑠(2𝜋𝑓0𝑡) (=> 
1

2
𝛿(𝑓 − 𝑓0) +

1

2
𝛿(𝑓 + 𝑓0)). See the figure 

below, top row. 

2) Replicating the signal with a period of 𝑓𝑠 = 80 𝑀𝐻𝑧 yields 𝑆(𝑓) =
𝑓𝑠

2
𝐺(𝑓 − 𝑓1) +

𝑓𝑠

2
𝐺(𝑓 + 𝑓1), with 𝑓1 = 20 𝑀𝐻𝑧. See the second row in the figure below. 

3) As the two replicas do not overlap, it is possible to correctly extract the complex envelope 

simply by shifting the signal by 20 MHz and applying a low pass filter. In the time domain 

this can be done as follows:  𝑧𝑛 = ℎ𝑛 ∗ (𝑠𝑛𝑒
−𝑗2𝜋𝑓1𝑛𝑇), with 𝑇 =

1

𝑓𝑠
 . See third and fourth rows. 



 
  



Problem 4 

Multiple electromagnetic waves radiated from distant sources at the frequency 𝑓0 = 435 MHz 

impinge simultaneously on an antenna array as represented in the figure below:  

 

Each antenna is equipped with its own circuity to generate the complex envelope of the received 

signal. 

1. Describe a procedure to measure the directions of arrival 𝜃1, 𝜃2, … based on the N signals 

(complex envelope) output by the array. 

2. Discuss how the set antenna spacing 𝑑𝑥 

3. After fixing antenna spacing 𝑑𝑥, determine the number of antennas required to obtain an angular 

resolution ∆𝜃 = 6° (you can assume an incident direction of 0° as a reference in the calculation 

of resolution) 

4. How would you change your answers at points 3 and 4 if you had knowledge that the direction of 

arrival of all impinging waves is limited in the interval (-30°,+30°)?  

5. The antenna array at point 4 is now used to transmit a wave by letting all antennas radiate 

simultaneously. Calculate the angular width of the transmitted beam and the angular position of 

secondary beams. 

 

Solution 

 

1) A signal coming from direction 𝜃 determines a phase variation across antenna elements equal 

to 𝜑(𝑥) = 2𝜋
𝑠𝑖𝑛(𝜃)

𝜆
𝑥 with. Running a Fourier Transform along the array produces a peak at 

spatial frequency 𝑓𝑥 =
𝑠𝑖𝑛(𝜃)

𝜆
, allowing for the detection of the direction if arrival of individual 

signals. 

2) With no prior information on the range of angular direction of impinging signals one must 

choose 𝑑𝑥 ≤
𝜆

2
, to guarantee no ambiguous peak. 

3) Angular resolution is obtained as ∆𝜃 =
𝜆

𝐿𝑥
=

𝜆

𝑁𝑑𝑥
, with 𝐿𝑥 = 𝑁𝑑𝑥 array length. Hence  𝑁 =

𝜆

∆𝜃𝑑𝑥
=

2

∆𝜃
=19.1 => 20 antennas 

4) The prior knowledge about the angular interval converts into the minimum and maximum 

possible spatial frequencies to be ±
𝑠𝑖𝑛(𝜃)

𝜆
=±

1

2𝜆
. The total spatial bandwidth is therefore 𝐵𝑥 =

1

𝜆
, and by the sampling theorem this requires 𝑑𝑥 ≤

1

𝐵𝑥
= 𝜆. The number of antennas required 

to have a resolution of  6° is therefore 𝑁 =
𝜆

∆𝜃𝑑𝑥
=

1

∆𝜃
= 9.5 => 10 antennas 



5) When used in transmission, the array will produce a main beam in the direction 𝜃 = 0° 
(orthogonal to the array) and beamwidth of 6°. The main beam corresponds to spatial 

frequency fx=0. Ambiguous beams will be produced at spatial frequencies 
𝑘

𝑑𝑥
=

𝑘

𝜆
, with k any 

integer (except 0, where we have the main beam). Those spatial frequencies are converted to 

angles as 𝜃 = 𝑎𝑠𝑖𝑛(𝑓𝑥𝜆), yielding 𝜃 = [−90°   90°]. 
 


