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Problem 1 

Consider the plane sinusoidal wave below f  = 1 GHz, whose incident electric field is: 

𝐸⃗ (0,0,0) = 𝑗𝜇 𝑦 + 0.819𝜇 𝑥 − 0.574𝜇 𝑧  (V/m) 

 

 
 

Calculate: 

1) The incident angle . 

2) The polarization of the incident wave. 

3) The reflection coefficient of the TE component. 

4) The power density in the second medium in the z direction. 

 

Solution 

1) The wave consists of a TE component (𝑗𝜇 𝑦) and a TM one (0.819𝜇 𝑥 − 0.574𝜇 𝑧). The absolute 

value of the TE component is clearly 1 V/m, that of the TM component is: 

|𝐸⃗ 𝑇𝑀| = √0.8192 + 0.5742 = 1 V/m 

Considering the x component: 

𝐸𝑥 = |𝐸⃗ 𝑇𝑀| cos(𝜃1) = cos(𝜃1)     𝜃1 = 35° 
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2) Let us consider the temporal evolution of the total field: 

𝐸⃗ (0,0,0, 𝑡) = cos (𝜔𝑡 +
𝜋

2
) 𝜇 𝑇𝐸 + cos(𝜔𝑡)𝜇 𝑇𝑀 V/m 

Looking from the back of the wave: 

 
Setting t = 0  𝐸⃗ (0,0,0, 𝑡) = 𝜇 𝑇𝑀 V/m 

Setting t = /2  𝐸⃗ (0,0,0, 𝑡) = −𝜇 𝑇𝐸 V/m 

As a result, the wave has LHCP. 

 

3) Let us calculate the refraction angle: 

 1472.1sinsinsin 22211  nn evanescent wave 

 

The reflection coefficient of the TE component is calculated as: 
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The sign of the latter intrinsic impedance is linked to the need of obtaining an exponentially 

decreasing trend of the electric field in the second medium (negative solution for the square root at 

the denominator). 
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4) Evanescent wave  total reflection  no power density in the second medium 

  

𝜇 𝑇𝑀 
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Problem 2 

A source with voltage Vg = 100 V and internal impedance Zg = 100  is connected to a load 

ZL = 200  by a transmission line with characteristic impedance ZC = 50  and attenuation constant 

 = 8 dB/m. The line length is l = 0.375 m and the frequency is f = 200 MHz. 

Calculate: 

1) The power absorbed by the load 

2) The trend of VA in time 

 
 

Solution 

1) The wavelength is: 

𝜆 =
𝑐

𝑓
= 1.5 m 

The reflection coefficient at section AA is: 

Γ𝐴 =
𝑍𝐿 − 𝑍𝐶

𝑍𝐿 + 𝑍𝐶
= 0.6 

The reflection coefficient at section BB is: 

Γ𝐵 = Γ𝐴𝑒
−𝑗2𝛽𝑙𝑒−2𝛼𝑙 = −0.3007 

Therefore, the input impedance is: 

Z𝐵 = Z𝐶

1 + Γ𝐵

1 − Γ𝐵
= 26.88 Ω 

The reflection coefficient for the source is: 

Γ𝑔 =
𝑍𝐵 − 𝑍𝑔

𝑍𝐵 + 𝑍𝑔
= −0.5763 

Therefore, the power crossing section BB is: 

P𝐵 = P𝐴𝑉 (1 − |Γ𝑔|
2
) = 8.3 W 

This power is partially absorbed by the line and partially by the load. 

The voltage at the beginning of the line is: 

V𝐵 = V𝑔

𝑍𝐵

𝑍𝐵 + 𝑍𝑔
= 21.2 V 

The progressive wave on the right side of section BB is: 

𝑉𝐵
+ =

𝑉𝐵

1 + Γ𝐵
= 30.3 V 

The voltage at section AA is: 

𝑉𝐴 = 𝑉𝐵
+𝑒−𝑗𝛽𝑙𝑒−𝛼𝑙(1 + Γ𝐴) = −𝑗34.3 V 

The power absorbed by the load is: 

P𝐿 =
1

2

|𝑉𝐴|
2

𝑍𝐿
= 0.0858 W 

 

2) The trend of VA in time is given by: 
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𝑣𝐴(𝑡) = 34.3 cos(2𝜋𝑓𝑡 − 𝜋/2)  V 
  



Problem 3 

An automotive Radar transmits a signal with a total bandwidth of B=3 GHz centered about a carrier 

frequency f0 = 25 GHz. The signal is reflected by a single target at the distance of 50 m. The 

transmitted signal is modeled as 𝑠𝑡𝑥(𝑡) = 𝑔(𝑡)𝑐𝑜𝑠(2𝜋𝑓0𝑡), with  𝑔(𝑡) a real-valued signal. 

 

1. Write the expression of the complex transmitted signal, of the complex received signal, and 

of the complex received signal after demodulation (the complex envelope). 

2. A discrete-time signal 𝑠𝑛 is obtained by sampling the real-valued received signal 𝑠𝑟𝑥(𝑡) with 

sampling frequency 𝑓𝑠 = 20 𝐺𝐻𝑧. Write the expressions of the Fourier Transform of 𝑠𝑛 and 

draw a graph of the magnitude.  

3. Describe a procedure to recover the complex envelope of the received signal from the 

sequence 𝑠𝑛.  

 

Solution 

 

Complex representation 

𝑠𝑡𝑥(𝑡) = 𝑔(𝑡)𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑡) 

𝑠𝑟𝑥(𝑡) = 𝑔(𝑡 − 𝜏)𝑒𝑥𝑝(𝑗2𝜋𝑓0(𝑡 − 𝜏)) 

𝑠𝑟𝑥,𝑐𝑜𝑚𝑝𝑙 𝑒𝑛𝑣(𝑡) = 𝑔(𝑡 − 𝜏)𝑒𝑥𝑝(−𝑗2𝜋𝑓0𝜏) 

 

Sampling and complex envelope 

 

The Fourier transform of the receive signal before and after being sampled are reported in the figure 

below. The two components at +-25 GHz are mapped to +- 5 GHz. The two components are well 

separated, so the complex envelope can be retrieved simply by filtering out the component at – 5 

GHz and shifting the other to base-band. 

 
  



Problem 4 

A receiver with two antennas receives a signal from a transmitter plus its reflection onto the ground, 

as depicted in the figure below. The carrier frequency is 𝑓0 = 5 GHz. The antenna spacing 𝑑𝑧 is set 

equal to half a wavelength. The complex transmitted signal can be modeled as 𝑠𝑡𝑥(𝑡) =
𝑔(𝑡)𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑡), with  𝑔(𝑡) a signal with a bandwidth 𝐵 = 10 MHz. 

 
 

1. Write the expression of the complex envelope of the signals received at the two antennas. 

2. Propose a procedure to restore the direct signal (that is, to cancel out the reflected signal) 

using the two signals from the two receiving antennas. 

3. Optimize the value of the antenna spacing 𝑑𝑧 to maximize the amplitude of the restored 

direct signal (as obtained according to the procedure at point 2). 

4. Discuss whether it would be possible (or advisable) to restore the direct signal using just one 

receiving antenna.   

 

Solution 

 

 

Direct signal at the two receivers (complex envelope): 

 

𝑠1,𝑑𝑖𝑟(𝑡) = 𝑔(𝑡 − 𝜏𝑑𝑖𝑟)𝑒𝑥𝑝(−𝑗2𝜋𝑓0𝜏𝑑𝑖𝑟) 

𝑠2,𝑑𝑖𝑟(𝑡) = 𝑠1,𝑑𝑖𝑟(𝑡)𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑑𝑖𝑟)𝑑𝑧) 

Where 𝜓𝑑𝑖𝑟 = 0 

 

Reflected signal at the two receivers (complex envelope): 

 

𝑠1,𝑟𝑒𝑓(𝑡) = 𝑔(𝑡 − 𝜏𝑟𝑒𝑓)𝑒𝑥𝑝(−𝑗2𝜋𝑓0𝜏𝑟𝑒𝑓) 

𝑠2,𝑟𝑒𝑓(𝑡) = 𝑠1,𝑟𝑒𝑓(𝑡)𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) 

Where 𝜓𝑑𝑖𝑟 =
𝜋

4
. 

Total signals:  



𝑠1(𝑡) = 𝑠1,𝑑𝑖𝑟(𝑡) + 𝑠1,𝑟𝑒𝑓(𝑡) 

𝑠2(𝑡) = 𝑠2,𝑑𝑖𝑟(𝑡) + 𝑠2,𝑟𝑒𝑓(𝑡) 

 

 

Cancellation of the reflected signal: 

𝑠(𝑡) = 𝑠1(𝑡)𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) − 𝑠2(𝑡) 

= 𝑠1,𝑑𝑖𝑟(𝑡)𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) − 𝑠2,𝑑𝑖𝑟(𝑡) + 𝑠1,𝑟𝑒𝑓(𝑡)𝑒𝑥𝑝 (−𝑗

2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) − 𝑠2,𝑟𝑒𝑓 

= 𝑠1,𝑑𝑖𝑟(𝑡)𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) − 𝑠1,𝑑𝑖𝑟(𝑡) + 

𝑠1,𝑟𝑒𝑓(𝑡)𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) − 𝑠1,𝑟𝑒𝑓(𝑡)𝑒𝑥𝑝 (−𝑗

2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) 

= 𝑠1,𝑑𝑖𝑟(𝑡) [𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) − 1] 

 

The optimal value of dz is the one that maximizes the amplitude of the restored signal, hence 

𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧) = −1 => 

2𝜋

𝜆
𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)𝑑𝑧 = 𝜋 => 𝑑𝑧 =

𝜆

2𝑠𝑖𝑛(𝜓𝑟𝑒𝑓)
  

 

Using a single antenna, the signal can be characterized in the frequency domain as: 

𝑆1(𝑓) = 𝐺(𝑓)[𝑒𝑥𝑝(−𝑗2𝜋(𝑓 + 𝑓0)𝜏𝑑𝑖𝑟) + 𝑒𝑥𝑝(−𝑗2𝜋(𝑓 + 𝑓0)𝜏𝑟𝑒𝑓)] 

= 𝐺(𝑓)𝑒𝑥𝑝(−𝑗2𝜋(𝑓 + 𝑓0)𝜏𝑑𝑖𝑟) [1 + 𝑒𝑥𝑝 (−𝑗2𝜋(𝑓 + 𝑓0)(𝜏𝑟𝑒𝑓 − 𝜏𝑑𝑖𝑟))] 

= 𝑆1,𝑑𝑖𝑟(𝑓)𝐻(𝑓) 

With 𝐻(𝑓) = 1 + 𝑒𝑥𝑝 (−𝑗2𝜋(𝑓 + 𝑓0)(𝜏𝑟𝑒𝑓 − 𝜏𝑑𝑖𝑟)). 

The filter can be inverted as long as its magnitude presents no zeroes. Otherwise, prefect inversion 

is not possible. Accordingly, the procedure is not as robust as in the case of two antennas. 

 


