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Problem 1 

A plane sinusoidal EM wave (f = 9 GHz) propagates from a medium with electric permittivity 

r1 = 4 (assume r = 1 for both media) into free space. The expression of the incident electric field 

is: 

�⃗� 𝑖(𝑧, 𝑦) = −𝜇 𝑥 𝑒
−𝑗

√2

2
𝛽1𝑧𝑒𝑗

√2

2
𝛽1𝑦 

 V/m 

 

1) What is the polarization of the incident field (specify the details of the polarization)? 

2) Determine the value of the electric field in A(z = 1 cm, y = 0 m). 

 
Solution 

 

1) The wave polarization is linear, specifically a TE component (along -x). 

 

2) The incidence angle can be derived, for example, from the y component of : 

𝛽𝑦 = 𝛽1 sin(𝜃) = 𝛽1√2/2 → sin(𝜃) = √2/2 → 𝜃 = 45° 

 

To determine the transmitted wave, it is first necessary to calculate the refraction angle, which is: 

𝜃2 = sin−1 (sin (𝜃)√
𝜀𝑟1

𝜀𝑟2
) = sin−1(√2) ≈ sin−1(1.4142) 
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This is the sign of an evanescent wave: this wave is totally reflected, but the electric field will 

penetrate in the second medium. The expression of the transmitted field will be: 

�⃗� 𝑡(𝑧, 𝑦) = −𝜇 𝑥(1 + Γ𝑇𝐸) 𝑒−𝑗𝛽2𝑧𝑧𝑒𝑗𝛽2𝑦𝑦  V/m 

As in A, y = 0 m → �⃗� 𝑡(𝑧, 𝑦 = 0 m) = −𝜇 𝑥Γ𝑇𝐸  𝑒−𝑗𝛽2𝑧𝑧 V/m 

Let us calculate 𝛽2𝑧: 

𝛽2𝑧 = 𝛽2 cos(𝜃2) = 𝛽2√1 − [sin(𝜃2)]2 = 𝛽0√1 − [sin(𝜃2)]2 = 𝛽0
√1 − √2

2
= 𝛽0√−1 

      = ±𝑗𝛽0 = − 𝑗𝛽0 

The negative sign is chosen to obtain a physical solution: 

𝑒−𝑗𝛽2𝑧𝑧 = 𝑒−𝑗(− 𝑗𝛽0)𝑧 = 𝑒−𝛽0𝑧 

The reflection coefficient can be calculated as: 

𝜂1 =
𝜂0

cos(𝜃)√𝜀𝑟1
= 266.6 Ω 

𝜂2 =
𝜂0

cos(𝜃2)√𝜀𝑟2
=

𝜂0

− 𝑗
= 𝑗377 Ω 

The choice of the negative sign in 𝜂2 is consistent with the one in 𝛽2𝑧. 

Γ =
𝜂2 − 𝜂2

𝜂2 + 𝜂1
= 0.334 + 𝑗0.943 

 

Therefore: 

�⃗� 𝑡(𝐴) = �⃗� 𝑡(𝑧 = 0.01 m, 𝑦 = 0 m) = −𝜇 𝑥(1.334 + 𝑗0.943)𝑒−0.01 𝛽0 = −𝜇 𝑥(0.202 +  𝑗0.143) 
V/m 

 

with 𝛽0 = 188.62 rad/m. 

  



Problem 2 

A plane wave (linear vertical polarization), propagating in free space and whose absolute value of 

the electric field is |�⃗� | = 1 V/m, is received by a linear vertical antenna (same direction as the 

wave polarization, gain G = 6 dB). The power available at the generator section, assumed to be 

equal to the power received by the antenna, is conveyed into the receiver RX via a lossy coaxial 

cable (attenuation constant  = 30 dB/km), with intrinsic impedance ZC = 50 . The antenna acts as 

an equivalent generator with internal impedance ZA = 100 . The RX, which acts as a load, is 

matched to the transmission line. The frequency is f = 600 MHz. The line length is l = 5.2 m. 

1. Determine the power absorbed by RX, PRX. 

2. Calculate the absolute value of the voltage at section BB. 

 
Solution 

 

1) The wavelength is  = c/f = 0.5 m. The available power is calculated from the power density of 

the incident wave and the antenna effective area. The former is: 

𝑆 =
1

2

|𝐸|2

𝜂0
= 1.3 mW/m2 

The latter is: 

𝐴𝑅𝑋 =
𝜆2

4𝜋
𝐺 = 0.0792 m2 

Therefore, the available power is: 

𝑃𝐴𝑉 = 𝑆𝐴𝑅𝑋 = 1.05 × 10−4 W 

Having a look at the impedances, there is match at the load section, but not at the generator one. In 

this case, there will be only one reflection in the circuit, specifically at section BB. Therefore, the 

power absorbed by the load is: 

𝑃𝐿 = 𝑃𝐴𝑉(1 − |Γ𝑔|)𝑒−2𝛼𝑙 

The reflection coefficient at section AA is given by: 

Γ𝐿 =
𝑍𝑅𝑋 − 𝑍𝐶

𝑍𝑅𝑋 + 𝑍𝐶
= 0 

Therefore, at section BB: 

Γ𝐵𝐵 = Γ𝐿𝑒
−2𝛼𝑙𝑒−2𝑗𝛽𝑙 = 0 → ZBB = ZC 

Finally: 

Γ𝑔 =
𝑍𝐵𝐵 − 𝑍𝐴

𝑍𝐵𝐵 + 𝑍𝐴
=

𝑍𝐶 − 𝑍𝐴

𝑍𝐶 + 𝑍𝐴
= −0.333 

The attenuation coefficient is converted in Np/m as: 

𝛼𝑙 =
𝛼

8.686 × 1000
= 0.0035 Np/m 

Therefore: 

𝑃𝐿 = 𝑃𝐴𝑉(1 − |Γ𝑔|)𝑒−2𝛼𝑙 = 9 × 10−5 W 

 

2) First, we need to calculate the voltage of the equivalent generator as: 
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|𝑉| = √𝑃𝐴𝑉8𝑍𝐴 = 0.29 V 

Recalling that ZBB = ZC, the voltage the can be partitioned as follows: 

|𝑉𝐵𝐵| = |𝑉|
𝑍𝐵𝐵

𝑍𝐴 + 𝑍𝐵𝐵
= |𝑉|

𝑍𝐶

𝑍𝐴 + 𝑍𝐶
= 0.0967 V 

 

  



Problem 3 

An automotive Radar transmits an electromagnetic pulse with a total bandwidth of B = 1 GHz 

centered about a carrier frequency f0 = 77 GHz. The signal is reflected by a pedestrian passing by at 

a distance of 15 meters from the Radar, and the reflected echo is then received by the Radar after a 

time 𝜏. 

 

1. Write the expression of the complex transmitted signal, of the complex received signal, and 

of the complex received signal after demodulation (the complex envelope). 

2. Assume that g(t) is a chirp signal, 𝑔(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
) 𝑒𝑥𝑝(𝑗𝜋𝐾𝑡2). Determine the value of the 

chirp rate K assuming a total duration T=100 microseconds. 

3. Describe a procedure to measure the distance of the pedestrian from the Radar. 

4. Evaluate the temporal and spatial resolution of such measurement. 

5. Comment on why you can achieve a temporal resolution much better than pulse length. 

 

Solution 

1) 

𝑠𝑡𝑥(𝑡) = 𝑔(𝑡) ∙ 𝑒𝑗2𝜋𝑓0𝑡 

𝑠𝑟𝑥(𝑡) = 𝑠𝑇𝑥(𝑡 − 𝜏) = 𝑔(𝑡 − 𝜏) ∙ 𝑒𝑗2𝜋𝑓0(𝑡−𝜏) 

𝑧(𝑡) = 𝑠𝑟𝑥(𝑡) ∙ 𝑒−𝑗2𝜋𝑓0𝑡 = 𝑔(𝑡 − 𝜏) ∙ 𝑒−𝑗2𝜋𝑓0𝜏 

2) For chirp B = KT, hence K = B/T = 
109

10−4 = 1013 Hz/s 

3) cross-correlating the complex envelope with the transmitted pulse g yields  a sharp peak centred 

about 𝜏 : 

𝑧(𝑡) ∗ 𝑐𝑜𝑛𝑗(𝑔(−𝑡)) = 𝑇𝑠𝑖𝑛𝑐((𝑡 − 𝜏)𝐵) ∙ 𝑒−𝑗2𝜋𝑓0𝜏 

the delay can therefore be measured by the peak position. Once the delay is known, it is converted 

into distance as 𝑅 =
𝑐

2
𝜏 

4) ∆𝜏 =
1

𝐵
,  ∆𝑅 =

𝑐

2
∆𝜏 =

𝑐

2𝐵
, 

5) What matters is pulse bandwidth, not pulse length. 

  



Problem 4 

A signal s(t) with total (two-sided) bandwidth B = 2 MHz arrives at two receivers following two 

distinct paths. The signals output at the two receivers are modeled as: 

𝑑1(𝑡) = 𝑠(𝑡) + 𝑠(𝑡 − 𝜏1) 

𝑑2(𝑡) = 𝑠(𝑡) + 𝑠(𝑡 − 𝜏2) 

Where 𝜏1 =  1 microsecond and 𝜏2 = 1.5 microseconds. 

3. Calculate the expression of the Fourier Transforms of 𝑑1(𝑡) and 𝑑2(𝑡) and draw the graphs 

of their absolute values, having care to highlight the positions where they are null (for this 

point, you can approximate S(f) to a rectangular pulse in the frequency domain).  

4. Propose a procedure to restore s(t) using only 𝑑1(𝑡). Is it possible to obtain s(t) with no 

errors? 

5. Propose a procedure to restore s(t) using 𝑑1(𝑡) and 𝑑2(𝑡). Is it now possible to obtain s(t) 

with no errors? 

 
Solution 

 

1) Taking the FT:  

 

𝑑1(𝑓) = 𝑠(𝑓) ∙ (1 + 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏1)) = 𝑠(𝑓)𝐻1(𝑓) 

𝑑2(𝑓) = 𝑠(𝑓) ∙ (1 + 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏2)) = 𝑠(𝑓)𝐻2(𝑓) 

 

𝑑1(𝑓) = 0 when 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏1) = −1 , so when  2𝜋𝑓𝜏1 = (2𝑘 + 1)𝜋 => 𝑓 =
(2𝑘+1)

2𝜏1
 

With 𝜏1 =  1 microsecond one has 𝑓 = 0.5 MHz for k = 0 and 𝑓 = −0.5 MHz for k = -1. The other 

values of k are not important since they result in values of frequency outside the spectral support of 

the signal.  

Similarly for signal d2 (for k = -1, 0, 1). The graphs are shown here below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) The procedure would be to convolve 𝑑1 for a filter u whose frequency response is the inverse of 

𝐻1(𝑓) = 1 + 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏1), but this cannot be implemented exactly since the frequency 

response cannot be inverted when it is 0. In this case, one could compute the inverse of a 

modified version of 𝐻1(𝑓) that shows no null values, such as 𝐻1(𝑓) + 𝜖, with 𝜖 a conveniently 

small number. See the graph below for an example: 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

3) Many answers are possible, all leveraging the idea to use both 𝑑1  and 𝑑2  to avoid null values 

in the frequency domain. A simple solution could be to form a new signal 𝑑3 = 𝑑1 + 𝑑2. 

In the frequency domain one has  

𝑑3(𝑓) = 𝑠(𝑓) ∙ (2 + 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏1) + 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏2)) = 𝑠(𝑓)𝐻3(𝑓) 

𝐻3(𝑓) is never 0 within the signal bandwidth (see graph below), hence it can be inverted at all 

frequencies. 

 

 

 

 

 

 

 

 

 

 


