
Electromagnetics and Signal Processing for Spaceborne Applications  

June 27th, 2022 

 
1 2 3 4 

 

 

do not write above 

 

 

 

Problem 1 

A plane sinusoidal EM wave (f = 9 GHz) propagates from a medium with electric permittivity 

r1 = 3 into free space (assume r = 1 for both media). The expression of the incident electric field 

is: 
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1) 1 Determine the incidence angle . 

2) 2 Determine the polarization of the incident field �⃗� 𝑖 (it is sufficient to state whether the 

polarization is elliptical, circular or linear; additional details, such as rotation direction or tilt 

angle, are not required). 

3) 3 Determine the polarization of the reflected field �⃗� 𝑟. 

4) 4 Calculate the absolute value of E0 by knowing that the power density of the electric field 

in A(x = -1 m, y = -1 m, z = -1 m) is ST = 0.5 W/m2 (consider only the contribution of the 

reflected field). 

 

 
Solution 

1) The incidence angle can be derived, for example, from the y component of : 

𝛽𝑦 = 𝛽 sin(𝜃) = 𝛽/2  sin(𝜃) = 1/2  𝜃 = 30° 
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2) The wave has two components: a TE one, along x, and a TM one, given by the combinations of 

the two fields along y and z. The absolute value of the components is E0 V/m (TM) and E0/2 V/m 

(TE), and the differential phase shift is /2  

 

3) Considering that the wave also has a TM component, it is worth checking the Brewster angle: 

𝜃𝐵 = tg−1 (√
𝜀𝑟2

𝜀𝑟1
) = 30° 

As  = B  the TM component is totally transmitted into the second medium. As a result, the 

polarization of the reflected wave will be linear (along x). 

 

4) To determine E0, it is first necessary to calculate the reflection coefficient for the TE component. 

To this aim, the transmission angle is: 

𝜃2 = sin−1 (sin (𝜃)√
𝜀𝑟1

𝜀𝑟2
) = 60° 

The TE reflection coefficient is: 

Γ =
𝜂2 − 𝜂1

𝜂2 + 𝜂1
=

𝜂0/(cos(𝜃2)√𝜀𝑟2) − 𝜂0/(cos(𝜃)√𝜀𝑟1)

𝜂0/(cos(𝜃2)√𝜀𝑟2) + 𝜂0/(cos(𝜃)√𝜀𝑟1)
= 0.5 

The reflected field is therefore given by: 
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The power density reaching A will be: 
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Solving for E0: 

E0 = 59 V/m 

  



Problem 2 

The power received by an antenna is conveyed into the receiver RX via a lossless coaxial cable, 

with intrinsic impedance ZC = 50 . The antenna acts as an equivalent generator with voltage 

V = 10-3 V and internal impedance ZA = 50 ; the RX, which acts as a load, has impedance 

ZRX = 150 . The frequency is f = 600 MHz. The line length is l = 5.2 m. 

1. Determine the power absorbed by RX, PRX. 

2. Using the same coaxial cable, propose changes to the circuit to achieve maximum power 

transfer from the antenna to RX: how much would PRX be in that case? 

 
Solution 

 

1) The wavelength is  = c/f = 0.5 m. The reflection coefficient at section AA is given by: 

Γ𝐿 =
𝑍𝑅𝑋 − 𝑍𝐶

𝑍𝑅𝑋 + 𝑍𝐶
= 0.5 

The solution is simplified by the partial match at section BB, so the power absorbed by the load can 

be simply calculated as (only one reflection at the load section): 

𝑃𝑅𝑋 = 𝑃𝐴𝑉(1 − |Γ𝐿|
2) =

|𝑉|2

8𝑍𝐴

(1 − |Γ𝐿|
2) = 1.875 nW 

 

2) Maximum power transfer is achieved by perfect matching, i.e. 𝑍𝐴 = 𝑍𝑅𝑋 = 𝑍𝐶 = 50 Ω. In this 

case, no reflections occur and the power transferred to RX is the whole available power. In this 

case: 

𝑃𝐴𝑉 =
|𝑉|2

8𝑍𝐶
= 2.5 nW 
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Problem 3 

A spaceborne Radar is designed to transmit a Radio-Frequency signal: 

𝑠𝑇𝑥(𝑡) = 𝑔(𝑡) ∙ 𝑒𝑗2𝜋𝑓0𝑡 

where 𝑔(𝑡) is base-band signal with (two-sided) bandwidth equal to 𝐵 = 6 MHz and 𝑓0 = 435 

MHz. The signal reaches a ground receiver along two distinct paths, as represented in the figure 

below:  

 
 

The total delays along the two paths are 𝜏1 and 𝜏2.  

1. Write the expressions of the Fourier Transform of the transmitted signal 𝑠𝑇𝑥(𝑡) and draw a 

graph of the magnitude (you can represent |𝐺(𝑓)| as a rectangular pulse with bandwidth 𝐵). 

2. Write the time domain expression of the complex envelope of the signal at the receiver. 

3. Draw a graph of the magnitude of the complex envelope at point 2 after it is cross-correlated 

with 𝑔(𝑡) (i.e.: convolution with 𝑔∗(−𝑡)), considering two cases: 

3.1. |𝜏1 − 𝜏2| ≫
1

𝐵
. 

3.2. |𝜏1 − 𝜏2| ≪
1

𝐵
. 

What is the role played by the phase terms in the two cases? 

4. Write a short pseudo-code to implement the extraction of the complex envelope at the receiver 

and the cross-correlation with 𝑔(𝑡). 

Solution 

Point 1)  

By the properties of the FT we have  
𝑠𝑇𝑥(𝑡) = 𝑔(𝑡) ∙ 𝑒𝑗2𝜋𝑓0𝑡 => 𝑠𝑇𝑥(𝑡𝑓) = 𝑔(𝑓 − 𝑓0) 

The graph of |the magnitude is therefore a rectangular pulse centered about f0 and with total width 

(bandwidth) of 6 MHz (so it goes from 432 to 438 MHz)| 

 

Point 2) 

𝑠𝑟𝑥(𝑡) = 𝑠𝑇𝑥(𝑡 − 𝜏1) + 𝑠𝑇𝑥(𝑡 − 𝜏2) = 

= 𝑔(𝑡 − 𝜏1) ∙ 𝑒𝑗2𝜋𝑓0(𝑡−𝜏1)+ 𝑔(𝑡 − 𝜏2) ∙ 𝑒𝑗2𝜋𝑓0(𝑡−𝜏2) 

 

When working in complex notation the complex envelope is simply obtained as 

𝑧(𝑡) = 𝑠𝑟𝑥(𝑡) ∙ 𝑒−𝑗2𝜋𝑓0𝑡 = 



= 𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1+ 𝑔(𝑡 − 𝜏2) ∙ 𝑒−𝑗2𝜋𝑓0𝜏2 

 

Point 3)  

Cross-correlation:  
𝑧𝑐𝑟(𝑡) = 𝑧(𝑡) ∗ 𝑔∗(−𝑡) = 

= {𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1 +  𝑔(𝑡 − 𝜏2) ∙ 𝑒−𝑗2𝜋𝑓0𝜏2} ∗ 𝑔∗(−𝑡) 

= 𝑅𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1+ 𝑅𝑔(𝑡 − 𝜏2) ∙ 𝑒−𝑗2𝜋𝑓0𝜏2 

Where 𝑅𝑔 = 𝑔(𝑡) ∗ 𝑔∗(−𝑡) is the autocorrelation function of g(t).  

By the properties of the autocorrelation function 𝑅𝑔 can be represented as a short signal of effective 

duration equal to the inverse of the bandwidth. 

Therefore, if |𝜏1 − 𝜏2| ≫
1

𝐵
.we have two well-separate peaks. In this case the phases have no effect 

on magnitude. 

Otherwise, the two peaks overlap and interfere. In this case the interference can be constructive or 

destructive, depending on the value of the difference 𝜏1 − 𝜏2 in the expression of the phases. 

Point 4) 

Perfect answer: start from the real-valued received signal 

dt = 1/(2*f0); % to be sure you have no alias when representing the real-valued signal 

t = (0:N-1)*dt; 

A = s_rx.*cos(2*pi*f0*t);  

B = s_rx.*sin(2*pi*f0*t); 

h = fir_filter(B); % filter with bandwidth >= B 

I = filter(A,h); % In phase component 

Q = filter(B,h); % In quadrature component 

Z = I + 1i*Q; 

Zrc = conv2(Z,conj(fliplr(g))); 

 

Frequency domain implementations were accepted as well. 

 

Totally acceptable answer: start from the complex received signal 

dt = 1/B; % notice the much less stringent requirement w.r.t. the previous case 

t = (0:N-1)*dt; 

Z = s_rx.*exp(-1i*2*pi*f0*t) 

Zrc = conv2(Z,conj(fliplr(g))); 

 

  



Problem 4 

Multiple electromagnetic waves radiated from distant sources at the frequency 𝑓0 = 1.3 GHz 

impinge simultaneously on an antenna array as represented in the figure below:  

 

Each antenna is equipped with its own circuity to generate the complex envelope of the received 

signal. 

1. Describe a procedure to measure the directions of arrival 𝜃1, 𝜃2, … based on the N signals 

(complex envelope) output by the array. 

2. Write a short pseudo-code to implement the procedure at point 1. 

3. Discuss how the set antenna spacing 𝑑𝑥 

4. After fixing antenna spacing 𝑑𝑥, determine the number of antennas required to obtain an 

angular resolution ∆𝜃 = 5° (you can assume an incident direction of 0° as a reference in the 

calculation of resolution) 

5. How would you change your answers at points 3 and 4 if you had knowledge that the direction 

of arrival of all impinging waves is limited in the interval (-9°,+9°)? (you don’t necessarily have 

to use too much time on calculations, just highlight the rationale, and proceed to details only if 

you have time left) 

Solution 

Point 1) 

Under the far-field assumption the signal output at each element is expressed as a sum of sinusoids 

𝑠𝑛 = ∑ 𝑒𝑥𝑝 (𝑗2𝜋
𝑠𝑖𝑛(𝜃𝑖)

𝜆
𝑛 ∙ 𝑑𝑥)𝑖  

The problem is then analogous to frequency detection and estimation, which is implemented by FT.  

Accordingly, we define : 𝑆(𝜃) = ∑ 𝑠𝑛 ∙ 𝑒𝑥𝑝 (−𝑗2𝜋
𝑠𝑖𝑛(𝜃)

𝜆
𝑛 ∙ 𝑑𝑥)𝑁

𝑛=1 , which by construction will 

produce a peak at the values of 𝜃 corresponding to any direction of arrival. 

Point 2) 

Nf = 2*N;  

fx = (-Nf/2:Nf/2-1)/Nf/dx; % axis of spatial frequencies 

S = fftshift(fft(s,Nf)); % with s = vector of the signals from the array 

f_peak = detect_peaks(abs(S)); 

teta_est = asin(lambda*f_peak); 

 



Point 3) 

The spatial frequency is 
𝑠𝑖𝑛(𝜃)

𝜆
. If any direction is possible then the min and max frequencies are ±

1

𝜆
, 

hence the total bandwidth is 
2

𝜆
. Accordingly, the condition not to have replicas is that 𝑑𝑥 ≤

𝜆

2
 

Point 4) 

Angular resolution is (approximately) obtained as ∆𝜃 =
𝜆

𝐿
=

5

180
𝜋 𝑟𝑎𝑑 => L = 2.644 m 

Setting 𝑑𝑥 =
𝜆

2
 the number of antennas is L/dx = 22.9 => 23 antennas 

Point 5) 

If I know that no source exists outside a given interval, then it is no problem if I allow replicas 

outside such interval. Accordingly, I can increase the spacing dx, and use this degree of freedom to 

improve angular resolution (hence larger array length L) and/or to reduce the number of antennas. 

 


