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Problem 1 

A uniform plane wave (frequency f = 300 MHz) propagates along z into free space from a medium 

with the following electromagnetic features: r1 = 3, r1 = 1 and 1 = 0.05 S/m. The incident electric 

field at the origin of the axis is 𝐸⃗ 𝑖(𝑧 = 0 m) = 𝑗𝐸0𝜇 𝑥 V/m. 

For this scenario: 

1) What is the wave polarization? 

2) Calculate the expression of the incident magnetic field in the first medium (left side) in the 

time domain. 

3) Calculate the wavelength in medium 1. 

4) Calculate E0 knowing that power density power at point A(1,1,2) is S(A) = 3 mW/m2. 

 
Solution 

1) The polarization is linear. 

 

2) The propagation in medium 1 is regulated by the propagation constant. As no approximations are 

possible (the loss tangent is roughly 1): 

 𝛾1 = √𝑗𝜔𝜇1(𝜎1+𝑗𝜔𝜀1) = 4.95 + 𝑗11.96 1/m 

Therefore, the expression of the electric field in medium 1 is: 
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 𝐸⃗ 𝑖 = 𝑗𝐸0𝑒
−𝛾1𝑧𝜇 𝑥 = 𝑗𝐸0𝑒

−4.95𝑧𝑒−𝑗11.96𝑧𝜇 𝑥 V/m. 

To find the magnetic field, we first need to calculate the intrinsic impedance of the medium: 

𝜂1 = √
𝑗𝜔𝜇1

(𝜎1+𝑗𝜔𝜀1)
= 169.1 + 𝑗70 Ω 

In the phasor domain, the incident magnetic field is: 

𝐻⃗⃗ 𝑖 =
𝐸0

𝜂1
𝑒−4.95𝑧𝑒−𝑗11.96𝑧𝜇 𝑦 =

𝐸0

|𝜂1|
𝑒−4.95𝑧𝑒−𝑗11.96𝑧𝑒−𝑗≮(𝜂1)𝜇 𝑦 

where |𝜂1| = 183 Ω and ≮ (𝜂1) = 0.3924 rad. 

Therefore, the expression of the incident magnetic field in the time domain is (considering also j, 

which translates into π/2 in the cosine argument): 

𝐻⃗⃗ 𝑖(𝑡) =
𝐸0

|𝜂1|
𝑒−4.95𝑧cos (2𝜋𝑓𝑡 − 11.96𝑧 − 1.18)𝜇 𝑦 

3) 𝜆1 =
2π

β1
= 0.525 m 

 
4) First, it is necessary to calculate the reflection coefficient, given by: 

𝛤 =
𝜂2 − 𝜂1

𝜂2 + 𝜂1
= 0.359 − 𝑗 0.174 

where  

𝜂2 = √
𝜇0

𝜀0
= 𝜂0 ≈ 377 Ω 

The transmitted electric field, at z = 0 m, is: 

𝐸⃗ 𝑡(𝑧 = 0 m) = 𝑗𝐸0𝑇𝜇 𝑥 = 𝑗𝐸0(1 + 𝛤)𝜇 𝑥 = 𝐸0(0.174 + 𝑗1.359)𝜇 𝑥 V/m. 

The power density reaching point A is (as there are no losses in the second medium, the power 

density does not change along z): 

𝑆(𝐴) =
1

2

|𝐸⃗ 𝑡(𝑧 = 0)|
2

𝜂2
=

1

2

(𝐸0)
2|𝑇|2

𝜂2
= 0.0025 (𝐸0)

2 = 3 mW/m2 

Therefore: 

𝐸0 = 1.1 V/m 

  



Problem 2 

A source with voltage Vg = 10 V and internal impedance Zg = 50  is connected to a load ZL = 50  

by a transmission line with characteristic impedance ZC = 150 . The line length is 

l = 6 m and the frequency is f = 400 MHz. 

Calculate: 

a) The power absorbed by the load 

b) The temporal trend of the voltage at the beginning of the line (section BB below), VB 

c) The absolute value of the voltage at section AA below, VA 

 
Solution 

a) The wavelength is: 
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The reflection coefficient at section AA is: 
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The reflection coefficient at section BB is: 
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Therefore, the input impedance is: 
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Z Z   Ω = ZL 

There is perfect match at section BB, therefore 

𝛤𝑔 =
𝑍𝐵 − 𝑍𝑔

𝑍𝐵 + 𝑍𝑔
= 0 

As a result, all the power made available by the generator will completely cross section BB and 

reach the load: 
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b) The voltage at the beginning of the line is found as: 

5 VB
B g

B g

Z
V V

Z Z
 


 

Therefore, the trend of VB in time is given by: 

( ) Re 5cos( )j t

B Bv t V e t       V 

 

c) The absolute value of the voltage at the load section can be obtained by inverting the following 

equation: 
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Problem 3 

A spaceborne system transmits a Radio-Frequency signal: 

𝑠𝑇𝑥(𝑡) = 𝑔(𝑡) ∙ 𝑒𝑗2𝜋𝑓0𝑡 

where 𝑔(𝑡) is base-band signal with (two-sided) bandwidth equal to 𝐵 = 100 MHz and 𝑓0 = 1 

GHz. The signal reaches a ground receiver along two distinct paths, as represented in the figure 

below:  

 
 

The expression of the received signal is: 

𝑠𝑅𝑥(𝑡) = 𝑠𝑇𝑥(𝑡 − 𝜏1) + 𝑎 ∙ 𝑠𝑇𝑥(𝑡 − 𝜏2) 

where difference between 𝜏1 and 𝜏2.is 𝜏2 − 𝜏1 = 2.5 nanoseconds and 𝑎 = 0.8 

1. Write the time domain expression of the complex envelope of the signal at the receiver. 

2. Write the expressions of the Fourier Transform of the complex envelope of the signal at the 

receiver and draw the graph of its magnitude (you can represent |𝐺(𝑓)| as a rectangular pulse 

with bandwidth 𝐵). 

3. Discuss if it is possible to eliminate the effect of the reflection on the surface and describe a 

procedure to do it. 

4. Write a short pseudo-code to implement the extraction of the complex envelope at the receiver. 

 

 

 

 

Solution 

 

1. Write the time domain expression of the complex envelope of the signal at the receiver. 

The complex is obtained from the RF received signal as: 

𝑠(𝑡) = 𝑠𝑅𝑥(𝑡) ∙ 𝑒−𝑗2𝜋𝑓0𝑡 

Hence: 

𝑠(𝑡) = 𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1 + 𝑎 ∙ 𝑔(𝑡 − 𝜏2) ∙ 𝑒−𝑗2𝜋𝑓0𝜏2  

2. Write the expressions of the Fourier Transform of the complex envelope of the signal at the 

receiver and draw the graph of its magnitude (you can represent |𝐺(𝑓)| as a rectangular pulse 

with bandwidth 𝐵). 



𝑆(𝑓) = 𝐺(𝑓) ∙ {𝑒−𝑗2𝜋(𝑓+𝑓0)𝜏1 + 𝑎 ∙ 𝑒−𝑗2𝜋(𝑓+𝑓0)𝜏2} 

= 𝐺(𝑓) ∙ 𝑒−𝑗2𝜋(𝑓+𝑓0)𝜏1 ∙ {1 + 𝑎 ∙ 𝑒−𝑗2𝜋(𝑓+𝑓0)(𝜏2−𝜏1)} 

Hence: 

|𝑆(𝑓)| = 𝑟𝑒𝑐𝑡 (
𝑓

𝐵
)√1 + 𝑎2 + 2𝑎 ∙ 𝑐𝑜𝑠(2𝜋(𝑓 + 𝑓0)(𝜏2 − 𝜏1)) 

The minimum is found when 2𝜋(𝑓 + 𝑓0)(𝜏2 − 𝜏1) = 𝑘𝜋, for any odd integer k. Since 𝑓0(𝜏2 −
𝜏1) = 2.5, this condition for any value of frequency equal to: 

𝑓 =
𝑘 − 5

2(𝜏2 − 𝜏1)
 

The one value within the bandwidth B is obtained for k=5, hence for f=0. 

The resulting graph of the squared magnitude (|𝑆(𝑓)|2) is as follows: 

 

 

 

  

 

 

3. Discuss if it is possible to eliminate the effect of the reflection on the surface and describe a 

procedure to do it. 

It is surely possible since the Fourier Transform of the signal combined with its reflection is 

never 0. Accordingly, the reflection is eliminated simply by filtering the received signal with a 

filter whose frequency response is: 

𝐻(𝑓) = (1 + 𝑎 ∙ 𝑒−𝑗2𝜋(𝑓+𝑓0)(𝜏2−𝜏1))
−1

 

The resulting signal in the frequency domain is: 

𝑆(𝑓)𝐻(𝑓) = 𝐺(𝑓) ∙ 𝑒−𝑗2𝜋(𝑓+𝑓0)𝜏1 

Which corresponds in the time domain to: 

𝑠(𝑡) ∗ ℎ(𝑡) = 𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1 

4. Write a short pseudo-code to implement the extraction of the complex envelope at the receiver. 



Assuming that received signal is correctly sampled, the complex envelope is extracted as: 

h = sinc(B*t); % any filter with a flat response within the signal bandwidth will do 

x = +conv(s_rx.*cos(2*pi*f0*t),h); 

y = -conv(s_rx.*sin(2*pi*f0*t),h); 

s = x + 1i*y; 

Note: this procedure works under the assumption that the signal is sampled with rate fs > 4*f0 

(otherwise, the multiplication with cos and sin generates a replica centered about f=0). A more 

efficient implementation is possible, but not considered here. 

 

 

 

  



Problem 4 

A spaceborne Radar transmits an electromagnetic pulse with a total bandwidth of B=10 MHz 

centered about a carrier frequency f0= 5 GHz: 𝑠𝑇𝑥(𝑡) = 𝑔(𝑡) ∙ 𝑒𝑗2𝜋𝑓0𝑡 . 
The signal is reflected by two targets on the Earth surface at a distance of 300 Km ± 20 meters 

from the Radar, and the reflected echoes are then received by the Radar at times 𝜏1 and 𝜏2 as 

represented in the figure below: 

 

Considering only a single antenna: 

1. Write the time domain expression of the complex envelope of the signal received by the 

Radar. 

2. Assume that 𝑔(𝑡) is a chirp signal, 𝑔(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
) 𝑒𝑥𝑝(𝑗𝜋𝐾𝑡2). Determine the value of the 

chirp rate K by assuming a total duration T=100 microseconds. 

3. Write the expression of the cross-correlation between the complex envelope of the received 

signal and the waveform 𝑔(𝑡). 

4. Can you distinguish the two targets and tell their distance from the Radar? How close can 

the two targets get before it is impossible to resolve them? 

 

Discuss whether with the addition of the second antenna you could also tell the angle under which 

the two targets are seen by the Radar. Note: this was the idea behind the Shuttle Radar Topography 

Mission in 2001. 

 

Solution 

 

1. Write the time domain expression of the complex envelope of the signal received by the 

Radar. 

𝑠(𝑡) = 𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1 + 𝑔(𝑡 − 𝜏2) ∙ 𝑒−𝑗2𝜋𝑓0𝜏2  

With  𝜏1 = 2
𝑅1

𝑐
  and  𝜏2 = 2

𝑅2

𝑐
 

2. Assume that 𝑔(𝑡) is a chirp signal, 𝑔(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
) 𝑒𝑥𝑝(𝑗𝜋𝐾𝑡2). Determine the value of the 

chirp rate K by assuming a total duration T=100 microseconds. 

 



The bandwidth of a chirp signal is B = KT, hence K = B/T = 1011 Hz/s 

 

3. Write the expression of the cross-correlation between the complex envelope of the received 

signal and the waveform 𝑔(𝑡). 

 

The autocorrelation of g(t) is a short pulse with duration 1/B, hence: 

𝑠(𝑡) ∗ 𝑔∗(−𝑡) = 𝑅𝑔(𝑡 − 𝜏1) ∙ 𝑒−𝑗2𝜋𝑓0𝜏1 + 𝑅𝑔(𝑡 − 𝜏2) ∙ 𝑒−𝑗2𝜋𝑓0𝜏2  

 

 

4. Can you distinguish the two targets and tell their distance from the Radar? How close can 

the two targets get before it is impossible to resolve them? 

 

The cross-correlation ensures a temporal resolution dt=1/B=10-7 s. The interval between the 

two delays is 𝜏2 − 𝜏1 = 2
𝑅1−𝑅2

𝑐
= 2.67 ∙ 10−7 seconds. Accordingly, the two targets appear 

as two well distinguished peaks. Their distance can be measured simply by taking the peak’s 

positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discuss whether with the addition of the second antenna you could also tell the angle under which 

the two targets are seen by the Radar. Note: this was the idea behind the Shuttle Radar Topography 

Mission in 2001. 

 

Of course, since having two (or more) antennas allows to measure the spatial frequency of the 

targets, which can be converted to their angular position via: 

𝑓𝑥 =
2

𝜆
𝑠𝑖𝑛(𝜃) 

 

Operationally, the spatial frequency is obtained by comparing the phases of each peak in the signal 

acquired at the two antennas.  

 

 


