

Water Vapor Retrieval to Support Space-borne Radar Systems: Results from Different Techniques

L. Luini^{1,2}, C. Riva^{1,2}, L. Quibus³, D. Vanhoenacker-Janvier³, G. A. Siles⁴, J. M. Riera⁵

¹Politecnico di Milano, Milan (Italy)
²Consiglio Nazionale delle Ricerche, Milan (Italy)
³Université catholique de Louvain, Louvain-la-Neuve (Belgium)
⁴Universidad Privada Boliviana, Cochabamba (Bolivia)
⁵Universidad Politécnica de Madrid, Madrid (Spain)

Agenda

Agenda

- Introduction and motivation
- Atmospheric effects on electromagnetic waves and impact on space-borne radar systems
- Experimental sites
- Experimental equipment and dataset
- Integrated water vapor from GNSS receivers
- Integrated water vapor from microwave radiometers
- Results and discussion
- Conclusions and future work

InCAP 2020, 17-20 December 2020, Kolkata (India)

Background and motivation

Space-borne radar: Synthetic Aperture Radars

- Synthetic Aperture Radars (SAR)
- Continuous and all-weather conditions monitoring of the Earth surface
- Several Earth Observation LEO satellites carrying SARs
- Various carrier frequencies: from L band (≈ 1 GHz) to X band (≈ 9 GHz)

ASI-CNES COSMO-SkyMed X band (≈ 9 GHz)

POLITECNICO DI MILANO

InCAP 2020, 17-20 December 2020, Kolkata (India)

SAR products: intensity maps

- Intensity maps (amplitude)
 - Goal \rightarrow monitor the Earth surface: all-weather pictures and land classification
 - Method → multiple data acquisition over the same area during the same passage (focusing)
 - Key information needed \rightarrow multiple amplitude measurements

SAR products: interferometry

- Interferometric measurements (phase)
 - Goal \rightarrow estimate displacement of the Earth surface (millimetric resolutions)
 - Method \rightarrow multiple data acquisitions over the same area during different passages
 - Key information needed → differential phase measurements over highly reflective targets

InCAP 2020, 17-20 December 2020, Kolkata (India)

What about the impact of the atmosphere?

How does the atmosphere impair space-borne radar measurements?

What are the key effects to be considered?

Atmosphere and SARs

InCAP 2020, 17-20 December 2020, Kolkata (India)

Ionosphere and SARs

Effects of the ionosphere (1-10 GHz range):

- Refraction: low
- Attenuation: low
- Faraday rotation: low

Impact of the ionosphere

• Group delay: high, but the ionosphere is dispersive so the group delay can be estimated and removed using signals with a non-negligible bandwidth

InCAP 2020, 17-20 December 2020, Kolkata (India)

Impact of the troposphere

Effects caused by ice and water particles:

- Signal attenuation consisting of both scattering and absorption due to the ice and water particles; also group delay is introduced
- Strong effects for frequencies above approximately 10 GHz (rain) and 50 GHz (clouds) → dimensions of particles (e.g. few mm for rain and few µm) become comparable with the wavelength
- Different phenomena (e.g. rain and clouds) due to different size, concentration and physical state of the particles
- Clouds → below 10 GHz basically transparent to the wave
- Rain → below 10 GHz lower effects and low probability of occurrence (e.g. 5%-10% in temperate climates)

Effects caused by atmospheric gases (1–100 GHz)

- Gaseous components affecting E.M. propagation in this frequency range → oxygen and water vapor
- Absorption and delay → due to the oscillation of oxygen (magnetic dipole) and water vapor (electric dipole) molecules induced by E.M. waves

- Significant effects specifically around some key frequencies \rightarrow resonance
- Effects dependent on temperature, pressure and relative humidity
- Both always present in the atmosphere

InCAP 2020, 17-20 December 2020, Kolkata (India)

Tropospheric and SARs

InCAP 2020, 17-20 December 2020, Kolkata (India)

Tropospheric and SARs

- It depends mainly on P
- Quite limited variability in space and time
- It can be estimated and removed accurately
- It depends mainly on IWV
- Quite high variability in space and time
- More difficult to estimate

InCAP 2020, 17-20 December 2020, Kolkata (India)

Depolarization

• Change in the wave polarization due to the non spherical shapes of ice/water particles

 Frequency used in SAR missions → low depolarization effects due to the particle size with respect to the wavelegth

Scintillations

 Very fast fluctuation of the received signal due to turbulence in the atmosphere (humidity variations, clouds, winds, rain drops ...) → distortion of the wave front

• Effectively mitigated by using large antennas (like in SAR missions)

To sum up on the atmospheric effects on SARs

- Ionosphere → effects either negligible (e.g. attenuation) or can be removed precisely (e.g. delay)
- Troposphere
 - Ice/water particles
 - limited effects for current SAR missions and anyway difficult to compensate for
 - low probability of occurrence
 - Gases (attenuation) \rightarrow very low for frequencies used in SAR missions
 - Gases (group delay)
 - Hydrostatic part (mainly oxygen) \rightarrow lower variability and quite easy estimation
 - Wet part (water vapor) → higher variability and more difficult to estimate

Delay (phase shift) \rightarrow strong effects on SAR interferometry

Need of experimental activities to investigate accurate methods to retrieve IWV

POLITECNICO DI MILANO

InCAP 2020, 17-20 December 2020, Kolkata (India)

Louvain-la-Neuve site

IGS station (BRUX)

- GNSS receiver
- 5-min sampling
- Zenithal IWV

GNSS receivers

- GNSS receivers (known position) → estimation of the total signal delay (group velocity)
- Total delay = ionospheric delay + tropospheric delay

- Dependent on the total electron content (TEC) and on the frequency
- It can be precisely removed by using a two-frequency receiver

ZTD = ZWD + ZHD

Zenith Hydrostatic Delay: it depends on

pressure, latitude

and site altitude

Zenith Total Delay: from the GNSS receiver Zenith Wet Delay: it contains the information on the IWV

InCAP 2020, 17-20 December 2020, Kolkata (India)

Zenith Hydrostatic Delay

Zenith Hydrostatic Delay is calculated as:

- ✓ Ground pressure not available in Como (P_0^{CO}), but values collected in Milan (P_0^{M})
- ✓ Difference in height between the sites (ΔH = 155 m) → pressure from Milan to be scaled to Como. Similar altitudes between Uccle and Louvain-la-Neuve
- ✓ To this aim, use of the annual global reference standard atmosphere from ITU-R [1]:

$$P(h') = 1013.25 \left[\frac{288.15}{288.15 - 6.5h'} \right]^{-34.1632/6.5} \text{ and } h' = \frac{6356.766h}{6356.766 + h} \quad \blacksquare \quad P_0^{CO} = 0.9797 P_0^{MI}$$

[1] ITU-R, "Reference Standard Atmospheres," ITU-R Recommendation P. 835-6, 2017

InCAP 2020, 17-20 December 2020, Kolkata (India)

Zenith Wet Delay and IWV

• Zenith Hydrostatic Delay is removed from ZTD

ZWD = ZTD - ZHD

IWV obtained from well-established procedure:

InCAP 2020, 17-20 December 2020, Kolkata (India)

POLITECNICO DI MILANO

Average temperature of

Microwave radiometer

• The atmospheric attenuation $A_{RAD}(f_i, \theta)$ at the radiometric frequency f_i and elevation angle θ is obtained from the brightness temperature $T_B(f_i, \theta)$ (assumption of no scattering in the atmosphere \rightarrow absence of rain) as follows:

$$\begin{split} A_{\scriptscriptstyle RAD}(f_i,\theta) = &10 \log_{10} \left(\begin{array}{c} T_{\scriptscriptstyle nnr}(f_i,\theta) - T_{\scriptscriptstyle C} \\ T_{\scriptscriptstyle nnr}(f_i,\theta) - T_{\scriptscriptstyle B}(f_i,\theta) \end{array} \right) \\ T_{\scriptscriptstyle mr}(f_i,\theta) = &c_1(f_i,\theta) T_{\scriptscriptstyle S} + c_2(f_i,\theta) \end{split} \quad \begin{aligned} T_{\scriptscriptstyle C} &\to \text{Cosmic background} \\ \text{temperature (2.73 K)} \\ T_{\scriptscriptstyle S} &\to \text{Surface temperature} \end{aligned}$$

• Estimated IWV \rightarrow IWV(θ) = $a_0 + a_1 A_{RAD}(f_1, \theta) + a_2 A_{RAD}(f_2, \theta) \rightarrow$ IWV=IWV(θ)sin(θ)

Microwave radiometer

• The atmospheric attenuation $A_{RAD}(f_i, \theta)$ at the radiometric frequency f_i and elevation angle θ is obtained from the brightness temperature $T_B(f_i, \theta)$ (assumption of no scattering in the atmosphere \rightarrow absence of rain) as follows:

$$A_{RAD}(f_{i},\theta) = 10 \log_{10} \begin{pmatrix} T_{mr}(f_{i},\theta) \\ T_{mr}(f_{i},\theta) \\ T_{mr}(f_{i},\theta) \\ T_{mr}(f_{i},\theta) \\ T_{mr}(f_{i},\theta) \\ T_{s} + c_{2}(f_{s},\theta) \\ T_{s} + c_{s}(f_{s},\theta) \\ T_{s} + c_{s}(f_{s},\theta)$$

 → Cosmic background temperature (2.73 K)
→ Surface temperature

• Estimated IWV \rightarrow IWV(θ) = $a_0 + a_1 A_{RAD}(f_1, \theta) + a_2 A_{RAD}(f_2, \theta) \rightarrow$ IWV=IWV(θ)sin(θ)

Data processing for integrated water vapor retrieval

Results and discussion: Milan

- Evaluation of the accuracy in retrieving IWV using MWRs, GNSS receivers and ERA5 data
- Reference data → RAOBS
- Database \rightarrow the whole of 2017
- Sample comparison: Milan site, 7th of January 2017

- All datasets indicate increase in the IWV
- Best agreement → MWR and ERA5
- GNSS receiver → linearly interpolated; slightly lower agreement (likely, distance between Como and Milan)

InCAP 2020, 17-20 December 2020, Kolkata (India)

Results and discussion

• More general results for the whole year (Milan)

- Higher correlation coefficient for MWR
- Samples in rainy conditions filtered: MWR inversions not reliable under electromagnetic scattering

InCAP 2020, 17-20 December 2020, Kolkata (India)

• Comparison assessment using the absolute error on IWV:

• Calculation of the mean (E) and root mean square (RMS) error

	MWR	ERA5	GNSS
E of IWV (mm)	-0.54	-0.99	0.27
RMS of IWV (mm)	1.34	1.72	1.76

Results and discussion: Louvain-la-Neuve

- Same evaluation
- Database → from 27/3/2017 to 24/3/2018
- Sample comparison: Louvain-la-Neuve site, 14th of June 2017

- No MWR available
- Higher temporal resolution of the GNSS-derived data
- All datasets showing an increase in IWV
- Good agreement of both datasets (within ±1-2 mm)

Results and discussion

• More general results for the whole year (Louvain-la-Neuve)

• Slightly higher correlation coefficient for ERA5 data

Error comparison for LLN:

	ERA5	GNSS
E of IWV (mm)	0.54	0.76
RMS of IWV (mm)	1.68	1.95

Results:

- ERA5 data \rightarrow slight better accuracy (same level as ERA5 for Milan)
- GNSS receiver \rightarrow slightly worse accuracy if compared to GNSS in Milan

Conclusions

- Comparison of different techniques to derive IWV (against RAOBS data) in two sites:
 - ✓ Microwave radiometer (MWR)
 - ✓ GNSS receiver
 - ERA5 data from ECMWF
- Key results:
 - ✓ Best accuracy → MWR
 - Comparable accuracy from GNSS receivers and using ERA5 data (latter slightly better)
- Final recommendations:
 - ✓ ERA5 data → no processing needed, readily available and usable with good spatial and temporal resolution (as for water vapor)
 - ✓ Choice on the source for IWV → also dependent on the time resolution: typically 1 second for MWR, 1 hour for GNSS and ERA5
- Future work:
 - comparison in other sites with very different climatic features (e.g. equatorial, tropical, cold, ...)
 - ✓ Use of NWP data with higher spatial (e.g. 9 km×9 km from ECMWF forecast) and spatio-temporal (e.g. WRF outputs) resolutions

InCAP 2020, 17-20 December 2020, Kolkata (India)

Thank you for your attention!

