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Problem 1 

Making reference to the figure below, a monostatic ground-based pulsed radar system, operating at 

f = 18 MHz and pointing zenithally, aims at monitoring the ionosphere, i.e. the peak electron 

content and its value. The trend of r in the ionosphere is depicted in the figure below on the right 

side (h1 = 100 km). Knowing that the radar pulse round trip time is  = 2.33169 ms, determine the 

value and position of peak electron content Nmax. 

 

Assumption: neglect tropospheric effects. 

 
Solution 

The peak electron content value can be obtained from the following expression: 

cos(𝜃) = √1 − (
9√𝑁max

𝑓
)

2

= √𝜀𝑟 

Setting  = 90° and inverting the expression → Nmax = 4×1012 e/m3. Nmax obviously corresponds to 

the lowest value of r; also, being r = 0 (for zenithal pointing) indicates that the wave is totally 

reflected exactly where Nmax lies, i.e. at h2. 
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The time required for the radar pulse to reach h2 from the ground is t = /2 = 1.165845 ms. Such 

time can be expressed as: 
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 Solving for the only unknown, i.e. h2 → h2 = 300 km. 

 

 

  



Problem 2 

An Earth-space link, with path length L = 400 km and operating at f = 90 GHz, crosses a 

homogeneous cloud with thickness h = 3 km. The transmitter (TX) uses a linear horizontal antenna, 

while the receiver (RX) linear horizontal antenna is tilted by an angle of  = 60° (see sketch below) 

due to problems with the satellite attitude control. For this link: 

1) Determine the polarization of the wave in front of the receiver RX (specify: LH or RH for a 

circular/elliptical, tilt angle for a linear). 

2) Calculate the power density in front of the RX antenna.  

3) Calculate the power received by RX. 

 

Assume: EIRP = 36 dBW; effective area of the RX antenna, ARX = 2 m2; specific attenuation due to 

clouds, c = 2 dB/km; RX pointing at the Earth center and TX pointing at zenith; no additional 

losses at TX and RX. 

 

 

Solution 

1) As clouds consist of small spherical droplets, which are isotropic, the polarization transmitted by 

TX is unaffected by the presence of clouds. 

 

2) The power density in front of the RX antenna is given by: 

𝑆𝑅𝑋 =
𝐸𝐼𝑅𝑃

4𝜋𝐿2
𝑓𝑇𝐿𝑇𝑋𝐴𝐶 ≈ 0.5 nW/m2 

where, given the assumptions: fT = LTX = 1. AC is the cloud attenuation in linear scale. Such value in 

dB is obtained as: 𝐴 = 𝛼𝐶ℎ = 6 dB → AC = 0.2512. 

 

3) The power received by RX needs to account for the RX antenna tilt: 

 𝑃𝑅𝑋 = 𝑆𝑅𝑋𝐴𝑅𝑋𝑓𝑅𝐿𝑅𝑋[cos(90 − 𝜃)]2 ≈ 0.75 nW 
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Problem 3 

Consider the plane sinusoidal wave below, with f  = 1 GHz and incident electric field given by: 

 

𝐸⃗ 𝑖(0,0,0) = 𝑗𝜇𝑥   (V/m) 

 

 
Calculate: 

1) The total electric field in the first medium. 

2) The power density in the second medium in the z direction. 

3) What happens if the incidence angle becomes 0°? 

 

Solution: 

1) The wave is TE. For the total electric field in medium 1, the reflection coefficient is needed. The 

refraction angle is: 

√𝜇𝑟1𝜀𝑟1 sin(𝜃) = √𝜇𝑟2𝜀𝑟2 sin(𝜃𝑡) → 𝜃𝑡 = 8.24° 

𝜂𝑇𝐸
1 = 𝜂0√

𝜇𝑟1

𝜀𝑟1

1

cos (𝜃)
= 230.1 Ω 

𝜂𝑇𝐸
2 = 𝜂0√

𝜇𝑟2

𝜀𝑟2

1

cos (𝜃𝑡)
= 190.5 Ω 

Γ =
𝜂𝑇𝐸

2 − 𝜂𝑇𝐸
1

𝜂𝑇𝐸
2 + 𝜂𝑇𝐸

1 = −0.094 

𝐸⃗ 𝑡(𝑥, 𝑦, 𝑥) = 𝐸⃗ 𝑖(𝑥, 𝑦, 𝑥) + 𝐸⃗ 𝑟(𝑥, 𝑦, 𝑥) = 𝑗𝜇𝑥𝑒
−𝑗

2𝜋

𝜆1
[cos(𝜃)𝑧+sin(𝜃)𝑦]

+ Γ𝑗𝜇𝑥𝑒
−𝑗

2𝜋

𝜆1
[− cos(𝜃)𝑧+sin(𝜃)𝑦]

 

V/m 

 

where 

𝜆1 =
𝑐

𝑓√𝜇𝑟1𝜀𝑟1

≈ 0.15 m 

 

2) The power density propagating in the second medium in the z direction is: 

𝑆𝑧
2 = 𝑆𝑧

1(1 − |Γ|2) =
1

2

|𝐸⃗ |
2

𝜂1
cos(𝜃) (1 − |Γ|2) = 2.2 mW/m2 

where 

 

z 0 

1 
y 

2 
𝜀𝑟1 = 4
𝜇𝑟1 = 1
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𝜂1 = 𝜂0√
𝜇𝑟1

𝜀𝑟1
= 188.5 Ω 

 

3) For orthogonal incidence: 

𝜂2 = 𝜂0√
𝜇𝑟2

𝜀𝑟2
= 188.5 Ω = 𝜂1 

Therefore, there is no reflected field in medium 1 and the whole power density crosses the interface. 

 

  



Problem 4 

Consider the uplink to a LEO satellite (pointing at the Earth center) from a ground station, operating 

at f = 30 GHz, whose antenna is pointed zenithally. Determine the uplink yearly availability to 

guarantee a minimum signal-to-noise ratio (SNR) of 6 dB at the satellite. The CCDF of the zenithal 

tropospheric attenuation is given by: 

( ) 1.15100
dB
TAdB

TP A e−=    (AT in dB and P in %) 

 
 

Additional assumptions and data: 

• elevation angle  = 30° 

• power transmitted from the ground PT = 378 W 

• radiation patter of the antennas (circular symmetry): f = [cos()]2 

• equivalent noise temperature emitted by the ground TB = 200 K 

• mean radiating temperature Tmr = 285 K 

• gain of the antennas (on board the satellite and on the ground) GT = GR = 30 dB 

• distance to the satellite L = 2400 km 

• bandwidth of the receiver B = 2 MHz 

• internal noise temperature of the receiver TR = 310 K 

• no additional losses in the transmitter and the receiver 

 

Solution 

The signal-to-noise ratio (SNR) is given by 

𝑆𝑁𝑅 =
𝑃𝑇𝐺𝑇𝑓𝑇(𝜆 4𝜋𝐿⁄ )2𝐺𝑅𝑓𝑅𝐴𝑆

𝑘[𝑇𝑅 + 𝑇𝐴]𝐵
 

where AS is the slant path attenuation in linear scale, fT = fR = [cos(90°-)]2 = 0.25,  k is the 

Boltzmann’s constant (1.38×10-23 J/K) and TA is the equivalent antenna noise temperature. For this 

scenario, as the satellite points at the ground, TA is therefore calculated as: 

𝑇𝐴 = 𝐴𝑆𝑇𝐵 + 𝑇𝑚𝑟(1 − 𝐴𝑆) 

Therefore, imposing SNRmin = 6 dB = 3.981: 

𝑆𝑁𝑅 =
𝑃𝑇𝐺𝑇𝑓𝑇(𝜆 4𝜋𝐿⁄ )2𝐺𝑅𝑓𝑅𝐴𝑆

𝑘[𝑇𝑅 + 𝐴𝑆𝑇𝐵 + 𝑇𝑚𝑟(1 − 𝐴𝑆)]𝐵
= 3.981 
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Inverting the equation above to solve for AS: 

𝐴𝑆 =
𝑆𝑁𝑅𝑚𝑖𝑛(𝐵𝑘𝑇𝑅 + 𝑇𝑚𝑟𝐵𝑘)

𝑃𝑇𝐺𝑇𝑓𝑇(𝜆 4𝜋𝐿⁄ )2𝐺𝑅𝑓𝑅 − 𝑆𝑁𝑅𝑚𝑖𝑛(𝐵𝑘𝑇𝐵 − 𝐵𝑘)
= 0.0254 

In dB: 

𝐴𝑆
𝑑𝐵 = −10log10(𝐴𝑆) = 15.948 dB 

The zenithal attenuation is: 

𝐴𝑇
𝑑𝐵  = 𝐴𝑆

𝑑𝐵 sin(𝜃) =7.974 dB 

Using the CCDF expression, such an attenuation corresponds to an outage probability of roughly 

0.01% in a year, i.e. to a yearly availability of 99.99%. 

 


