EM wave propagation for space-borne systems - Prof. L. Luini,

 June 26 ${ }^{\text {th }}, 2023$

SURNAME AND NAME \qquad
ID NUMBER \qquad
Signature \qquad

Problem 1

Making reference to the figure below, we want the transmitter TX to reach the user RX at distance d by exploiting the ionosphere (elevation angle $\theta=60^{\circ}$). The ionosphere is modelled with the symmetric electron density profile (daytime) sketched in the figure (right side), where $N_{\max }=6 \times 10^{12} \mathrm{e} / \mathrm{m}^{3}, N_{\min }=4 \times 10^{10} \mathrm{e} / \mathrm{m}^{3}, h_{\min }=100 \mathrm{~km}$ and $h_{\max }=400 \mathrm{~km}$.

1) Determine the maximum distance d achievable for the TX \rightarrow RX link.
2) Determine the operational frequency f to achieve the conditions at point 1).
3) Indicate a reasonable margin on f found at point 2) to guarantee the $\mathrm{TX} \rightarrow \mathrm{RX}$ link notwithstanding the ionospheric variations.
4) Indicate the best polarization to be used for the $\mathrm{TX} \rightarrow \mathrm{RX}$ link.

Assume: the virtual reflection height h_{V} is 1.2 times h_{R}, the height at which the wave is actually reflected; the Earth is flat; no tropospheric effects to be considered.

Solution

1) The distance d is maximized if the reflection occurs as high as possible in the ionosphere, i.e. at the height $h_{p}=250 \mathrm{~km}$, correspondent to $N_{\max }$. Considering the figure below, the distance can be found by inverting the following expression:
$h_{V}=1.2 h_{p}=d / 2 \tan \theta \rightarrow d=\frac{2.4 h_{p}}{\tan \theta}=346.4 \mathrm{~km}$

2) The link operational frequency f can be determined by inverting the following equation:
$\cos \theta=\sqrt{1-\left(\frac{f_{C}}{f_{m}}\right)^{2}}=\sqrt{1-\left(\frac{9 \sqrt{N_{\max }}}{f_{m}}\right)^{2}}$
Solving for the frequency f_{m}, we obtain:
$f_{m}=\sqrt{\frac{81 N_{\max }}{1-[\cos (\theta)]^{2}}}=25.5 \mathrm{MHz}$
3) During the night, the peak values of the electron content will decrease: it is a good rule of thumb to use reduce by 10% the peak frequency to avoid that the wave crosses the ionosphere at nighttime. Therefore $\rightarrow f^{\prime}=0.9 f=22.95 \mathrm{MHz}$
4) Depolarization in the ionosphere affects linearly polarized waves, but not circularly polarized ones. Therefore, the best polarization is LHCP or RHCP.

Problem 2

A uniform plane wave with horizontal polarization (frequency $f=300 \mathrm{MHz}$) propagates along z into free space from a medium with the following electromagnetic features: $\varepsilon_{r 1}=3$, $\mu_{r 1}=1$ and $\sigma_{1}=0.05 \mathrm{~S} / \mathrm{m}$. The incident electric field at the origin of the axis is $\vec{E}_{i}(\boldsymbol{z}=\mathbf{0} \mathbf{m})=\boldsymbol{E}_{\mathbf{0}} \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{x}} \mathrm{V} / \mathrm{m}$.

For this scenario:

1) Calculate the expression of the incident magnetic field in the first medium (left side) in the time domain.
2) Calculate the wavelength in medium 1.
3) Calculate E_{0} knowing that power density power at point $\mathrm{A}\left(1,1, \lambda_{2}\right)$ is $S(A)=3 \mathrm{~mW} / \mathrm{m}^{2}$.

Solution

1) The propagation in medium 1 is regulated by the propagation constant. As no approximations are possible (the loss tangent is roughly 1):
$\gamma_{1}=\sqrt{j \omega \mu_{1}\left(\sigma_{1+} j \omega \varepsilon_{1}\right)}=4.95+j 11.961 / \mathrm{m}$
Therefore, the expression of the electric field in medium 1 is:
$\vec{E}_{i}=E_{0} \boldsymbol{e}^{-\gamma_{1} z} \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{x}}=\boldsymbol{E}_{0} \boldsymbol{e}^{-4.95 z} e^{-j 11.96 z} \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{x}} \mathrm{V} / \mathrm{m}$.
To find the magnetic field, we first need to calculate the intrinsic impedance of the medium:
$\eta_{1}=\sqrt{\frac{j \omega \mu_{1}}{\left(\sigma_{1+} j \omega \varepsilon_{1}\right)}}=169.1+j 70 \Omega$
In the phasor domain, the incident magnetic field is:
$\overrightarrow{\boldsymbol{H}}_{\boldsymbol{i}}=\frac{E_{0}}{\eta_{1}} \boldsymbol{e}^{-4.95 z} e^{-j 11.96 z} \vec{\mu}_{\boldsymbol{y}}=\frac{E_{0}}{\left|\eta_{1}\right|} \boldsymbol{e}^{-4.95 z} e^{-j 11.96 z} e^{-j \nless\left(\eta_{1}\right)} \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{y}}$
where $\left|\eta_{1}\right|=183 \Omega$ and $\nless\left(\eta_{1}\right)=0.3924 \mathrm{rad}$.
Therefore, the expression of the incident magnetic field in the time domain is:
$\vec{H}_{i}(t)=\frac{E_{0}}{\left|\eta_{1}\right|} e^{-4.95 z} \cos (2 \pi f t-11.96 z-0.3924) \vec{\mu}_{y}$
2) $\lambda_{1}=\frac{2 \pi}{\beta_{1}}=0.525 \mathrm{~m}$
3) First, it is necessary to calculate the reflection coefficient, given by:
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=0.359-j 0.174$
where
$\eta_{2}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\eta_{0} \approx 377 \Omega$
The transmitted electric field, at $z=0 \mathrm{~m}$, is:
$\vec{E}_{t}(z=0 \mathrm{~m})=\boldsymbol{E}_{\mathbf{0}} T \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{x}}=\boldsymbol{E}_{\mathbf{0}}(1+\Gamma) \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{x}}=\boldsymbol{E}_{\mathbf{0}}(1.359-j 0.174) \overrightarrow{\boldsymbol{\mu}}_{\boldsymbol{x}} \mathrm{V} / \mathrm{m}$.
The power density reaching point A is (as there are no losses in the second medium, the power density does not change along z):
$S(A)=\frac{1}{2} \frac{\left|\vec{E}_{t}(z=0)\right|^{2}}{\eta_{2}}=\frac{1}{2} \frac{\left(E_{0}\right)^{2}|T|^{2}}{\eta_{2}}=0.0025\left(E_{0}\right)^{2}=3 \mathrm{~mW} / \mathrm{m}^{2}$
Therefore:
$E_{0}=1.1 \mathrm{~V} / \mathrm{m}$

Problem 3

We need to design a link to a deep-space probe orbiting Mars and operating at Ka-band, specifically at $f=26 \mathrm{GHz}$. The ground station is equipped with a steerable antenna to track the probe. Calculate the reflector antenna diameter of the ground station (Gregorian configuration with efficiency $\eta=0.5$) necessary to guarantee that the probe can be correctly tracked down to an elevation angle $\theta=30^{\circ}$ for 99.9% of the time in a year, i.e. that the minimum SNR is 5 dB . To this aim, assume:

- that the atmosphere is stratified;
- that the ground station LNA noise temperature is $T_{R}=50 \mathrm{~K}$;
- to neglect the cosmic background temperature;
- that the mean radiating temperature of the atmosphere is $T_{m r}=10^{\circ} \mathrm{C}$;
- that the probe makes use of a parabolic antenna with gain $G_{T}=45 \mathrm{~dB}$;
- the transmit power is $P_{T}=110 \mathrm{~W}$;
- the probe antenna always points at the ground station;
- the distance between the probe satellite and the ground station is $L=225000000 \mathrm{~km}$;
- the receiver bandwidth is $B=1 \mathrm{kHz}$;
- that the CCDF of the zenithal atmospheric attenuation A_{T} is modelled by:

$$
P\left(A_{Z}^{d B}\right)=100 e^{-0.69 A_{Z}^{d B}} \quad\left(A_{Z} \text { in } \mathrm{dB} \text { and } P \text { in } \%\right)
$$

Solution

The zenithal attenuation $A_{Z}^{d B}$ is determined using the CCDF model. 99.9% availability corresponds to $P=0.1 \%$ exceedance. Inverting the CCDF formula:
$A_{Z}^{d B}=-\frac{1}{0.69} \ln \left(\frac{0.1}{100}\right) \approx 10 \mathrm{~dB}$
Scaling the zenithal attenuation to the target elevation angle:
$A_{S}^{d B}=\frac{A_{Z}^{d B}}{\sin (\theta)} \approx 20 \mathrm{~dB}$
which, in linear scale, corresponds to:
$A_{L}=10^{\frac{A_{S}^{d B}}{10}} \approx 0.01$
The system noise temperature is (for the Gregorian configuration, the waveguide is very short and its effect on the noise can be neglected):
$T_{s y s}=T_{R}+T_{A}=T_{R}+T_{m r}\left(1-A_{L}\right)=330.3 \mathrm{~K}$
The SNR is given by:
$S N R=\frac{P_{T} G_{T} f_{T}(\lambda / 4 \pi L)^{2} G_{R} f_{R} A_{L}}{k T_{\text {sys }} B}$
where $f_{R}=1$ and $f_{T}=1$.
Inverting the expression above to solve for G_{R} (by setting $\mathrm{SNR}=\mathrm{SNR}_{\min }=5 \mathrm{~dB}$):
$G_{R} \approx 74 \mathrm{~dB}$
Recalling that:
$\frac{\eta A_{g}}{G_{R}}=\frac{\lambda^{2}}{4 \pi}$
where A_{g} is the geometrical area of the antenna:
$A_{g}=\left(\frac{D_{R}}{2}\right)^{2} \pi$
the antenna diameter D_{R} is obtained:
$D_{R} \approx 26 \mathrm{~m}$
This is indeed the dimension of Ka-band deep-space antennas installed at NASA Deep Space Network (DSN) sites (Goldstone, Madrid, Camberra).

Problem 4

A GNSS receiver, whose height is $H=700 \mathrm{~m}$ a.m.s.l., tracks the signal of a GPS satellite at $\theta=30^{\circ}$. The vertical profile of the tropospheric refractivity can be modeled as:

$$
N=N_{0} e^{-h / h_{0}}=700 e^{-h / 25000} \quad(\text { h in m) }
$$

Making reference to this scenario, determine the tropospheric error affecting the measured pseudorange for a single frequency and a dual frequency GNSS receiver.

Solution

The pseudorange measurement is affected by different error sources, including the tropospheric delay d due to the presence of gases, which can be calculated from the knowledge of the refractivity profile. In fact, the tropospheric delay τ, in seconds, can be calculated as:
$\tau=T-T_{0}=\int_{H}^{H_{S}} \frac{d h}{v(h)}-\int_{H}^{H_{S}} \frac{d h}{c}=\int_{H}^{H_{S}} \frac{d h}{c} n-\int_{H}^{H_{S}} \frac{d h}{c}=\frac{1}{c}\left[\int_{H}^{H_{S}}(n-1) d h\right]=$
$=\frac{10^{-6}}{c}\left[\int_{H}^{H_{S}} N d h\right]=\frac{N_{0} 10^{-6}}{c} \int_{H}^{H_{S}} e^{-\frac{h}{h_{0}}} d h=-\frac{h_{0} N_{0} 10^{-6}}{c}\left[e^{-\frac{h}{h_{0}}}\right]_{H}^{H_{S}}$
Assuming $H_{S} \gg h_{0}$:
$\tau=-\frac{h_{0} N_{0} 10^{-6}}{c}\left(0-e^{-\frac{H}{h_{0}}}\right)=\frac{h_{0} N_{0} 10^{-6}}{c} e^{-\frac{H}{h_{0}}}=56.7 \mathrm{~ns}$
As a result the error on the pseudorange due to the tropospheric delay is:
$d=\frac{c \tau}{\sin (\theta)}=34 \mathrm{~m}$
As the tropospheric delay is not frequency dependent, there is no benefit in using a dual frequency receiver.

