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Problem 1 

Making reference to the figure below, we want the transmitter TX to reach the user RX at distance d 

by exploiting the ionosphere (elevation angle  = 60°). The ionosphere is modelled with the 

symmetric electron density profile (daytime) sketched in the figure (right side), where 

Nmax = 6×1012 e/m3, Nmin = 4×1010 e/m3, hmin = 100 km and hmax = 400 km.  

1) Determine the maximum distance d achievable for the TX → RX link.  

2) Determine the operational frequency f to achieve the conditions at point 1). 

3) Indicate a reasonable margin on f found at point 2) to guarantee the TX → RX link 

notwithstanding the ionospheric variations. 

4) Indicate the best polarization to be used for the TX → RX link. 

 

Assume: the virtual reflection height hV is 1.2 times hR, the height at which the wave is actually 

reflected; the Earth is flat; no tropospheric effects to be considered. 

  

 
 

Solution 

1) The distance d is maximized if the reflection occurs as high as possible in the ionosphere, i.e. at 

the height hp = 250 km, correspondent to Nmax. Considering the figure below, the distance can be 

found by inverting the following expression: 
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ℎ𝑉 = 1.2 ℎ𝑝 = 𝑑
2⁄ tan𝜃 →  𝑑 =

2.4 ℎ𝑝

tan𝜃
= 346.4 km 

 
 

2) The link operational frequency f can be determined by inverting the following equation: 
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Solving for the frequency 𝑓𝑚, we obtain: 

 

𝑓𝑚 = √
81𝑁max

1 − [cos(𝜃)]2
= 25.5 MHz 

 

3) During the night, the peak values of the electron content will decrease: it is a good rule of thumb 

to use reduce by 10% the peak frequency to avoid that the wave crosses the ionosphere at nighttime. 

Therefore → f ´ = 0.9f = 22.95 MHz 

 

4) Depolarization in the ionosphere affects linearly polarized waves, but not circularly polarized 

ones. Therefore, the best polarization is LHCP or RHCP. 
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Problem 2 

A uniform plane wave with horizontal polarization (frequency f = 300 MHz) propagates along z into 

free space from a medium with the following electromagnetic features: r1 = 3, 

r1 = 1 and 1 = 0.05 S/m. The incident electric field at the origin of the axis is 

𝑬⃗⃗ 𝒊(𝒛 = 𝟎 𝐦) = 𝑬𝟎𝝁⃗⃗ 𝒙 V/m. 

For this scenario: 

1) Calculate the expression of the incident magnetic field in the first medium (left side) in the 

time domain. 

2) Calculate the wavelength in medium 1. 

3) Calculate E0 knowing that power density power at point A(1,1,2) is S(A) = 3 mW/m2. 

 
Solution 

1) The propagation in medium 1 is regulated by the propagation constant. As no approximations are 

possible (the loss tangent is roughly 1): 

 𝛾1 = √𝑗𝜔𝜇1(𝜎1+𝑗𝜔𝜀1) = 4.95 + 𝑗11.96 1/m 

Therefore, the expression of the electric field in medium 1 is: 

 𝑬⃗⃗ 𝒊 = 𝑬𝟎𝒆
−𝜸𝟏𝒛𝝁⃗⃗ 𝒙 = 𝑬𝟎𝒆

−𝟒.𝟗𝟓𝒛𝒆−𝒋𝟏𝟏.𝟗𝟔𝒛𝝁⃗⃗ 𝒙 V/m. 

To find the magnetic field, we first need to calculate the intrinsic impedance of the medium: 

𝜂1 = √
𝑗𝜔𝜇1

(𝜎1+𝑗𝜔𝜀1)
= 169.1 + 𝑗70 Ω 

In the phasor domain, the incident magnetic field is: 

𝑯⃗⃗⃗ 𝒊 =
𝑬𝟎

𝜼𝟏
𝒆−𝟒.𝟗𝟓𝒛𝒆−𝒋𝟏𝟏.𝟗𝟔𝒛𝝁⃗⃗ 𝒚 =

𝑬𝟎

|𝜼𝟏|
𝒆−𝟒.𝟗𝟓𝒛𝒆−𝒋𝟏𝟏.𝟗𝟔𝒛𝒆−𝒋≮(𝜼𝟏)𝝁⃗⃗ 𝒚 

where |𝜂1| = 183 Ω and ≮ (𝜂1) = 0.3924 rad. 

Therefore, the expression of the incident magnetic field in the time domain is: 

𝑯⃗⃗⃗ 𝒊(𝒕) =
𝑬𝟎

|𝜼𝟏|
𝒆−𝟒.𝟗𝟓𝒛𝐜𝐨𝐬 (𝟐𝝅𝒇𝒕 − 𝟏𝟏. 𝟗𝟔𝒛 − 𝟎. 𝟑𝟗𝟐𝟒)𝝁⃗⃗ 𝒚 

2) 𝜆1 =
2π

β1
= 0.525 m 

 
3) First, it is necessary to calculate the reflection coefficient, given by: 

𝛤 =
𝜂2 − 𝜂1

𝜂2 + 𝜂1
= 0.359 − 𝑗 0.174 
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where  

𝜂2 = √
𝜇0

𝜀0
= 𝜂0 ≈ 377 Ω 

The transmitted electric field, at z = 0 m, is: 

𝐸⃗ 𝑡(𝑧 = 0 m) = 𝑬𝟎𝑇𝝁⃗⃗ 𝒙 = 𝑬𝟎(1 + 𝛤)𝝁⃗⃗ 𝒙 = 𝑬𝟎(1.359 − 𝑗 0.174)𝝁⃗⃗ 𝒙 V/m. 

The power density reaching point A is (as there are no losses in the second medium, the power 

density does not change along z): 

𝑆(𝐴) =
1

2

|𝐸⃗ 𝑡(𝑧 = 0)|
2

𝜂2
=

1

2

(𝐸0)
2|𝑇|2

𝜂2
= 0.0025 (𝐸0)

2 = 3 mW/m2 

Therefore: 

𝐸0 = 1.1 V/m 

  



Problem 3 

We need to design a link to a deep-space probe orbiting Mars and operating at Ka-band, specifically 

at f = 26 GHz. The ground station is equipped with a steerable antenna to track the probe. Calculate 

the reflector antenna diameter of the ground station (Gregorian configuration with efficiency 

 = 0.5) necessary to guarantee that the probe can be correctly tracked down to an elevation angle 

 = 30° for 99.9% of the time in a year, i.e. that the minimum SNR is 5 dB. To this aim, assume: 

• that the atmosphere is stratified; 

• that the ground station LNA noise temperature is TR = 50 K; 

• to neglect the cosmic background temperature; 

• that the mean radiating temperature of the atmosphere is Tmr = 10 °C; 

• that the probe makes use of a parabolic antenna with gain GT = 45 dB; 

• the transmit power is PT = 110 W; 

• the probe antenna always points at the ground station; 

• the distance between the probe satellite and the ground station is L = 225000000 km; 

• the receiver bandwidth is B = 1 kHz; 

• that the CCDF of the zenithal atmospheric attenuation AT is modelled by: 

𝑃(𝐴𝑍
𝑑𝐵) = 100𝑒−0.69𝐴𝑍

𝑑𝐵
   (AZ in dB and P in %) 

Solution 

The zenithal attenuation 𝐴𝑍
𝑑𝐵 is determined using the CCDF model. 99.9% availability corresponds 

to P = 0.1% exceedance. Inverting the CCDF formula: 

𝐴𝑍
𝑑𝐵 = −

1

0.69
ln (

0.1

100
) ≈ 10 dB 

Scaling the zenithal attenuation to the target elevation angle: 

𝐴𝑆
𝑑𝐵 =

𝐴𝑍
𝑑𝐵

sin (𝜃)
≈ 20 dB 

which, in linear scale, corresponds to: 

𝐴𝐿 = 10
𝐴𝑆

𝑑𝐵

10 ≈ 0.01 

The system noise temperature is (for the Gregorian configuration, the waveguide is very short and 

its effect on the noise can be neglected): 

𝑇𝑠𝑦𝑠 = 𝑇𝑅 + 𝑇𝐴 = 𝑇𝑅 + 𝑇𝑚𝑟(1 − 𝐴𝐿) = 330.3 K 

The SNR is given by: 

𝑆𝑁𝑅 =
𝑃𝑇𝐺𝑇𝑓𝑇(𝜆 4𝜋𝐿⁄ )2𝐺𝑅𝑓𝑅𝐴𝐿

𝑘𝑇𝑠𝑦𝑠𝐵
 

where fR = 1 and fT = 1.  

Inverting the expression above to solve for GR (by setting SNR = SNRmin = 5 dB):  

GR ≈ 74 dB 

Recalling that: 

𝜂𝐴𝑔

𝐺𝑅
=

𝜆2

4𝜋
 

where Ag is the geometrical area of the antenna: 

𝐴𝑔 = (
𝐷𝑅

2
)
2

𝜋 



the antenna diameter DR is obtained: 

DR ≈ 26 m 

This is indeed the dimension of Ka-band deep-space antennas installed at NASA Deep Space 

Network (DSN) sites (Goldstone, Madrid, Camberra). 

 

 

  



Problem 4 

A GNSS receiver, whose height is H = 700 m a.m.s.l., tracks the signal of a GPS satellite at  = 30°. 

The vertical profile of the tropospheric refractivity can be modeled as: 

 

𝑁 = 𝑁0𝑒
−ℎ/ℎ0 = 700𝑒−ℎ/25000     (h in m) 

 

Making reference to this scenario, determine the tropospheric error affecting the measured 

pseudorange for a single frequency and a dual frequency GNSS receiver. 

 

Solution 

 

The pseudorange measurement is affected by different error sources, including the tropospheric 

delay d due to the presence of gases, which can be calculated from the knowledge of the refractivity 

profile. In fact, the tropospheric delay , in seconds, can be calculated as: 

𝜏 = 𝑇 − 𝑇0 = ∫
𝑑ℎ

𝑣(ℎ)

𝐻𝑆

𝐻

− ∫
𝑑ℎ

𝑐

𝐻𝑆

𝐻

= ∫
𝑑ℎ

𝑐
𝑛

𝐻𝑆

𝐻

− ∫
𝑑ℎ

𝑐

𝐻𝑆

𝐻

=
1

𝑐
[∫ (𝑛 − 1)𝑑ℎ

𝐻𝑆

𝐻

] = 

=
10−6

𝑐
[∫ 𝑁𝑑ℎ

𝐻𝑆

𝐻

] =
𝑁010

−6

𝑐
∫ 𝑒

−
ℎ
ℎ0𝑑ℎ

𝐻𝑆

𝐻

= −
ℎ0𝑁010

−6

𝑐
[𝑒

−
ℎ
ℎ0]

𝐻

𝐻𝑠

 

Assuming HS >> h0: 

𝜏 = −
ℎ0𝑁010

−6

𝑐
(0 − 𝑒

−
𝐻
ℎ0) =

ℎ0𝑁010
−6

𝑐
𝑒

−
𝐻
ℎ0 = 56.7 ns 

As a result the error on the pseudorange due to the tropospheric delay is: 

𝑑 =
𝑐𝜏

sin (𝜃)
= 34 m 

As the tropospheric delay is not frequency dependent, there is no benefit in using a dual frequency 

receiver. 

 

 

 


