EM wave propagation for space-borne systems – Prof. L. Luini, June 26th, 2023

	1	2	3	4
		do not	write abo	ove
SURNAME AND NAME				
ID NUMBER				
SIGNATURE				

Problem 1

Making reference to the figure below, we want the transmitter TX to reach the user RX at distance *d* by exploiting the ionosphere (elevation angle $\theta = 60^{\circ}$). The ionosphere is modelled with the symmetric electron density profile (daytime) sketched in the figure (right side), where $N_{\text{max}} = 6 \times 10^{12} \text{ e/m}^3$, $N_{\text{min}} = 4 \times 10^{10} \text{ e/m}^3$, $h_{\text{min}} = 100 \text{ km}$ and $h_{\text{max}} = 400 \text{ km}$.

- 1) Determine the maximum distance *d* achievable for the TX \rightarrow RX link.
- 2) Determine the operational frequency f to achieve the conditions at point 1).
- 3) Indicate a reasonable margin on f found at point 2) to guarantee the TX \rightarrow RX link notwithstanding the ionospheric variations.
- 4) Indicate the best polarization to be used for the TX \rightarrow RX link.

Assume: the virtual reflection height h_V is 1.2 times h_R , the height at which the wave is actually reflected; the Earth is flat; no tropospheric effects to be considered.

Solution

1) The distance *d* is maximized if the reflection occurs as high as possible in the ionosphere, i.e. at the height $h_p = 250$ km, correspondent to N_{max} . Considering the figure below, the distance can be found by inverting the following expression:

2) The link operational frequency f can be determined by inverting the following equation:

$$\cos\theta = \sqrt{1 - \left(\frac{f_c}{f_m}\right)^2} = \sqrt{1 - \left(\frac{9\sqrt{N_{\text{max}}}}{f_m}\right)^2}$$

Solving for the frequency f_m , we obtain:

$$f_m = \sqrt{\frac{81N_{\max}}{1 - [\cos(\theta)]^2}} = 25.5 \text{ MHz}$$

3) During the night, the peak values of the electron content will decrease: it is a good rule of thumb to use reduce by 10% the peak frequency to avoid that the wave crosses the ionosphere at nighttime. Therefore $\rightarrow f' = 0.9f = 22.95$ MHz

4) Depolarization in the ionosphere affects linearly polarized waves, but not circularly polarized ones. Therefore, the best polarization is LHCP or RHCP.

Problem 2

A uniform plane wave with horizontal polarization (frequency f = 300 MHz) propagates along z into free space from a medium with the following electromagnetic features: $\varepsilon_{r1} = 3$, $\mu_{r1} = 1$ and $\sigma_1 = 0.05$ S/m. The incident electric field at the origin of the axis is $\vec{E}_i(z = 0 \text{ m}) = E_0 \vec{\mu}_x \text{ V/m}.$

For this scenario:

- 1) Calculate the expression of the incident magnetic field in the first medium (left side) in the time domain.
- 2) Calculate the wavelength in medium 1.
- 3) Calculate E_0 knowing that power density power at point A(1,1, λ_2) is $S(A) = 3 \text{ mW/m}^2$.

Solution

1) The propagation in medium 1 is regulated by the propagation constant. As no approximations are possible (the loss tangent is roughly 1):

 $\gamma_1 = \sqrt{j\omega\mu_1(\sigma_{1+}j\omega\varepsilon_1)} = 4.95 + j11.96$ 1/m Therefore, the expression of the electric field in medium 1 is: $\vec{E}_i = E_0 e^{-\gamma_1 z} \vec{\mu}_x = E_0 e^{-4.95 z} e^{-j11.96 z} \vec{\mu}_x$ V/m.

To find the magnetic field, we first need to calculate the intrinsic impedance of the medium:

$$\eta_1 = \sqrt{\frac{j\omega\mu_1}{(\sigma_{1+}j\omega\varepsilon_1)}} = 169.1 + j70 \ \Omega$$

In the phasor domain, the incident magnetic field is:

$$\vec{H}_{i} = \frac{E_{0}}{\eta_{1}} e^{-4.95z} e^{-j11.96z} \vec{\mu}_{y} = \frac{E_{0}}{|\eta_{1}|} e^{-4.95z} e^{-j11.96z} e^{-j \neq (\eta_{1})} \vec{\mu}_{y}$$

where $|\eta_1| = 183 \Omega$ and $\lt (\eta_1) = 0.3924$ rad.

Therefore, the expression of the incident magnetic field in the time domain is:

$$\vec{H}_{i}(t) = \frac{E_{0}}{|\eta_{1}|} e^{-4.95z} \cos \left(2\pi f t - 11.96z - 0.3924\right) \vec{\mu}_{y}$$
2) $\lambda_{1} = \frac{2\pi}{\beta_{1}} = 0.525 \text{ m}$

3) First, it is necessary to calculate the reflection coefficient, given by: $\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = 0.359 - j \ 0.174$ where

$$\eta_2 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \eta_0 \approx 377 \ \Omega$$

The transmitted electric field, at z = 0 m, is:

 $\vec{E}_t(z=0 \text{ m}) = E_0 T \vec{\mu}_x = E_0 (1+\Gamma) \vec{\mu}_x = E_0 (1.359 - j \ 0.174) \vec{\mu}_x \text{ V/m.}$ The power density reaching point A is (as there are no losses in the second medium, the power density does not change along z):

$$S(A) = \frac{1}{2} \frac{\left|\vec{E}_t(z=0)\right|^2}{\eta_2} = \frac{1}{2} \frac{(E_0)^2 |T|^2}{\eta_2} = 0.0025 \ (E_0)^2 = 3 \text{ mW/m}^2$$

Therefore:
 $E_0 = 1.1 \text{ V/m}$

Problem 3

We need to design a link to a deep-space probe orbiting Mars and operating at Ka-band, specifically at f = 26 GHz. The ground station is equipped with a steerable antenna to track the probe. Calculate the reflector antenna diameter of the ground station (Gregorian configuration with efficiency $\eta = 0.5$) necessary to guarantee that the probe can be correctly tracked down to an elevation angle $\theta = 30^{\circ}$ for 99.9% of the time in a year, i.e. that the minimum SNR is 5 dB. To this aim, assume:

- that the atmosphere is stratified;
- that the ground station LNA noise temperature is $T_R = 50$ K;
- to neglect the cosmic background temperature;
- that the mean radiating temperature of the atmosphere is $T_{mr} = 10 \text{ }^{\circ}\text{C}$;
- that the probe makes use of a parabolic antenna with gain $G_T = 45 \text{ dB}$;
- the transmit power is $P_T = 110$ W;
- the probe antenna always points at the ground station;
- the distance between the probe satellite and the ground station is L = 225000000 km;
- the receiver bandwidth is B = 1 kHz;
- that the CCDF of the zenithal atmospheric attenuation A_T is modelled by:

$$P(A_Z^{dB}) = 100e^{-0.69A_Z^{dB}}$$
 (A_Z in dB and P in %)

Solution

The zenithal attenuation A_Z^{dB} is determined using the CCDF model. 99.9% availability corresponds to P = 0.1% exceedance. Inverting the CCDF formula:

$$A_Z^{dB} = -\frac{1}{0.69} \ln\left(\frac{0.1}{100}\right) \approx 10 \text{ dB}$$

Scaling the zenithal attenuation to the target elevation angle:
$$A_S^{dB} = \frac{A_Z^{dB}}{\sin(\theta)} \approx 20 \text{ dB}$$

which, in linear scale, corresponds to:

$$A_{I} = 10^{\frac{A_{S}^{2}}{10}} \approx 0.01$$

The system noise temperature is (for the Gregorian configuration, the waveguide is very short and its effect on the noise can be neglected):

$$T_{sys} = T_R + T_A = T_R + T_{mr}(1 - A_L) = 330.3 \text{ K}$$

The SNR is given by:

$$SNR = \frac{P_T G_T f_T (\lambda/4\pi L)^2 G_R f_R A_L}{kT_{sys} B}$$

where $f_R = 1$ and $f_T = 1$.

Inverting the expression above to solve for G_R (by setting SNR = SNR_{min} = 5 dB):

$$G_R \approx 74 \text{ dB}$$

Recalling that:

$$\frac{\eta A_g}{G_R} = \frac{\lambda^2}{4\pi}$$

where A_g is the geometrical area of the antenna:

$$A_g = \left(\frac{D_R}{2}\right)^2 \pi$$

the antenna diameter D_R is obtained:

 $D_R \approx 26 \text{ m}$

This is indeed the dimension of Ka-band deep-space antennas installed at NASA Deep Space Network (DSN) sites (Goldstone, Madrid, Camberra).

Problem 4

A GNSS receiver, whose height is H = 700 m a.m.s.l., tracks the signal of a GPS satellite at $\theta = 30^{\circ}$. The vertical profile of the tropospheric refractivity can be modeled as:

$$N = N_0 e^{-h/h_0} = 700 e^{-h/25000} \quad \text{(h in m)}$$

Making reference to this scenario, determine the tropospheric error affecting the measured pseudorange for a single frequency and a dual frequency GNSS receiver.

Solution

The pseudorange measurement is affected by different error sources, including the tropospheric delay d due to the presence of gases, which can be calculated from the knowledge of the refractivity profile. In fact, the tropospheric delay τ , in seconds, can be calculated as:

$$\tau = T - T_0 = \int_{H}^{H_S} \frac{dh}{v(h)} - \int_{H}^{H_S} \frac{dh}{c} = \int_{H}^{H_S} \frac{dh}{c} n - \int_{H}^{H_S} \frac{dh}{c} = \frac{1}{c} \left[\int_{H}^{H_S} (n-1) dh \right] =$$

$$= \frac{10^{-6}}{c} \left[\int_{H}^{H_S} N dh \right] = \frac{N_0 10^{-6}}{c} \int_{H}^{H_S} e^{-\frac{h}{h_0}} dh = -\frac{h_0 N_0 10^{-6}}{c} \left[e^{-\frac{h}{h_0}} \right]_{H}^{H_S}$$

Assuming $H_S >> h_0$:
$$\tau = -\frac{h_0 N_0 10^{-6}}{c} \left(0 - e^{-\frac{H}{h_0}} \right) = \frac{h_0 N_0 10^{-6}}{c} e^{-\frac{H}{h_0}} = 56.7 \text{ ns}$$

As a result the error on the pseudorange due to the tropospheric delay is: $d = \frac{c\tau}{\sin(\theta)} = 34 \text{ m}$

As the tropospheric delay is not frequency dependent, there is no benefit in using a dual frequency receiver.