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Problem 1 

Making reference to the figure below, a communication system exploits the ionosphere during 

nighttime: it operates at f = 3.6 MHz and works with elevation angle  = 30°. The trend of r in the 

ionosphere is depicted in the figure below on the right side (h1 = 100 km, h2 = 200 km and h3 = 400 

km). Calculate the distance between the stations to enable the communication. 

 

Assumptions: no tropospheric effects; flat Earth; virtual reflection height hV = 1.2 hR (hR being the 

real reflection height). 

 
Solution 

The peak electron content value can be obtained from the following expression: 

√1 − (
9√𝑁max

𝑓
)

2

= √min⁡(𝜀𝑟) 

Setting r = 0 as from the graph on the right, inverting the expression → Nmax = 16×1010 e/m3. Nmax 

obviously corresponds to the lowest value of r, but, as the link is not zenithal, the reflection will 

occur somewhere below h2. In fact, the reflection point depends on N through the following 

expression: 
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√1 − (
9√𝑁

𝑓
)

2

= cos⁡(𝜃) 

Inverting the expression → N = 4×1010 e/m3. Given the trend of r → N(h1) = 0 e/m3 and 

N(h2) = Nmax = 16×1010 e/m3. Therefore, the value of h (up to h2) as a function of N is: 

ℎ =
ℎ2 − ℎ1

𝑁max
𝑁 + ℎ1 

Using N = 4×1010 e/m3 → h = 125 km. The distance between the station is: 

𝐷 = 2
ℎ𝑉

tan⁡(𝜃)
= 2

1.2ℎ𝑅

tan⁡(𝜃)
≈ 520⁡km 

 

 

 

 

  



Problem 2 

An Earth-space link, with path length L = 500 km and operating at f = 900 MHz, crosses a rain layer 

with thickness hR = 2 km (raindrops all aligned as shown in the sketch below). Both the transmitter 

(TX) and the receiver (RX) use linear horizontal antennas, but the TX antenna is tilted by  = 30° as 

shown in the sketch below, due to issues in the satellite attitude control. For this link: 

1) Determine the polarization of the wave in front of the receiver RX (specify: LH or RH for a 

circular/elliptical, tilt angle for a linear). 

2) Calculate the power received by RX. 

 

Assume: transmit power PT = 200 W; gain of the antennas G = 8 dB; radiation pattern of the 

antennas 𝑓 = [cos(𝜃)]2. 

 

 

Solution 

1) As the operational frequency is much lower than 10 GHz, the wave is unaffected by the presence 

of rain along the path, both in terms of attenuation and delay. This means that no depolarization 

effects can take place. 

 

2) Given the operational frequency, tropospheric and ionospheric attenuation can be neglected. 

Thus, the power received by RX is simply: 

𝑃𝑅 = 𝑃𝑇𝐺𝑇𝑓𝑇 (
𝜆

4𝜋𝐿
)
2

𝑓𝑅𝐺𝑅 ≈ 16.8⁡pW 

where, fT = 1, 𝑓𝑅 = [cos⁡(𝜃)]2 = 0.75, GT = GR = 6.3,  = 0.334 m. 
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Problem 3 

Consider the plane sinusoidal wave below, with f  = 1 GHz and incident electric field given by: 

 

𝐸⃗ 𝑖(0,0,0) = 𝑗𝜇𝑥⁡⁡⁡(V/m) 

 

 
Calculate the electric field in point A(x = -5 m, y = 1 m, z = -1 m). 

 

Solution 

The total electric field is given by the summation between the incident field and the reflected field 

(if any). To determine the reflected field, it is first necessary to calculated the refraction angle: 

𝜃2 = sin−1 (sin⁡(𝜃)√
𝜇𝑟1𝜀𝑟1

𝜇𝑟2𝜀𝑟2
) ≈ sin−1(2.294) 

This result indicates an evanescent wave, which means total reflection. For the complete expression 

of the reflected field though, it is necessary to calculate the reflection coefficient. To this aim, let us 

calculate 𝛽2𝑧: 

𝛽2𝑧 = 𝛽2 cos(𝜃2) = 𝛽2√1 − [sin(𝜃2)]2 = 𝛽0√𝜇𝑟2𝜀𝑟2√1 − [sin(𝜃2)]2 = ±𝑗4.13𝛽0 = − 𝑗4.13𝛽0 

It is necessary to pick the negative sign to obtain a physical solution. The reflection coefficient can 

now be calculated: 

𝜂1 = 𝜂0√
𝜇𝑟1

𝜀𝑟1

1

cos(𝜃)
= 266.6⁡Ω 

𝜂2 = 𝜂0√
𝜇𝑟2

𝜀𝑟2

1

cos(𝜃2)
= 𝜂0√

𝜇𝑟2

𝜀𝑟2

1

cos(𝜃2)
= 𝑗91.3⁡Ω 

The choice of the negative sign for cos(𝜃2) in 𝜂2 is consistent with the one in 𝛽2𝑧. 

Γ =
𝜂2 − 𝜂2

𝜂2 + 𝜂1
= −0.728 + 𝑗0.686 

The expression of the total electric field in medium 1 is therefore: 

 

𝐸⃗ (𝑦, 𝑧) = 𝐸⃗ 𝑖(𝑦, 𝑧) + 𝐸⃗ 𝑟(𝑦, 𝑧) = 𝑗𝜇𝑥𝑒
−𝑗𝛽1cos⁡(𝜃)𝑧𝑒−𝑗𝛽1sin⁡(𝜃)𝑦 + Γ𝑗𝜇𝑥𝑒

𝑗𝛽1cos⁡(𝜃)𝑧𝑒−𝑗𝛽1sin⁡(𝜃)𝑦 V/m 

The value of the electric field in A is: 
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𝐸⃗ (𝐴) = (−0.697 − 𝑗0.893)𝜇𝑥 V/m 

with 𝛽1 = 𝛽0√𝜇𝑟1𝜀𝑟1 =
2𝜋

𝜆0
√𝜇𝑟1𝜀𝑟1 = 167.5⁡rad/m 

 

 

  



Problem 4 

Consider the downlink from a GEO satellite to a ground station consisting of a VSAT (Very Small 

Aperture Terminal), operating at f = 25 GHz. The VSAT consists of a typical reflector antenna with 

a feed and a transmission line (specific attenuation TL = 1 dB/m) guiding the signal from the feed 

to the receiver RX. Determine the maximum length L of the transmission line to guarantee a 

minimum signal-to-noise ratio (SNR) of 6 dB at the receiver. The link undergoes tropospheric 

attenuation; the zenithal trend of the specific attenuation  is given by: 

 

𝛼(ℎ) = 5𝑒−0.5ℎ   ( is in dB/km and h is the height in km) 

 
 

Additional assumptions and data: 

• elevation angle  = 30° 

• power transmitted by the satellite PT = 400 W 

• antennas optimally pointed 

• mean radiating temperature Tmr = 280 K 

• gain of the antennas: GT = 40 dB, GR = 20 dB 

• distance to the satellite D = 37000 km 

• bandwidth of the receiver B = 1 MHz 

• internal noise temperature of the receiver TR = 250 K 

• physical temperature of the transmission line TP = 295 K 

• no additional losses in the transmitter and the receiver 

• troposphere: horizontally homogeneous 

 

Solution 

The signal-to-noise ratio (SNR) is given by 

𝑆𝑁𝑅 =
𝑃𝑇𝐺𝑇𝑓𝑇(𝜆 4𝜋𝐷⁄ )2𝐺𝑅𝑓𝑅𝐴𝑆

𝑘[𝑇𝐴 + 𝑇𝑇𝐿 + 𝑇𝑅 𝐴𝑇𝐿⁄ ]𝐵
 

where AS is the slant path attenuation in linear scale, TTL is the equivalent noise temperature of the 

transmission line, ATL is the transmission line attenuation in linear scale, fT = fR = 1, k is the 

Boltzmann’s constant (1.38×10-23 J/K) and TA is the equivalent antenna noise temperature. The 

latter is calculated as: 

𝑇𝐴 = 𝐴𝑆𝑇𝐶 + 𝑇𝑚𝑟(1 − 𝐴𝑆) 

with TC = 2.73 K. Let us calculate the zenithal tropospheric attenuation as: 
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𝐴𝑍 = ∫ 𝛼(ℎ)𝑑ℎ
30⁡km

0

= ∫ 5𝑒−0.5ℎ𝑑ℎ
30⁡km

0

≈ ∫ 5𝑒−0.5ℎ𝑑ℎ
∞

0

=
5

0.5
= 10⁡dB 

The slant attenuation, in linear scale, is: 

𝐴𝑆 = 10
−

𝐴𝑍
10sin⁡(𝜃) = 0.01 

Numerically → TA = 277 K. 

As for the transmission line equivalent noise temperature: 

𝑇𝑇𝐿 = 𝑇𝑃(1 − 𝐴𝑇𝐿) 

𝐴𝑇𝐿 is defined as: 

𝐴𝑇𝐿 = 10−
𝛼𝑇𝐿𝐿
10  

where L is in m. 

Therefore, imposing SNRmin = 6 dB = 3.981: 

𝑆𝑁𝑅 =
𝑃𝑇𝐺𝑇(𝜆 4𝜋𝐷⁄ )2𝐺𝑅𝐴𝑆

𝑘[𝑇𝐴 + 𝑇𝑃(1 − 𝐴𝑇𝐿) + 𝑇𝑅 𝐴𝑇𝐿⁄ ]𝐵
= 3.981 

Inverting the equation above to solve for L in 𝐴𝑇𝐿 (one solution is an acceptable real number, the 

other one is a complex number) 

𝐿 ≈ 12.35⁡m 


