Radio and Optical Wave Propagation – Prof. L. Luini, July 12th, 2021

Problem 1

The figure below shows a bistatic radar system consisting of two LEO satellites flying along the same orbit (satellite height above the ground H = 600 km). The radar extracts information on the ground by measuring the power received at RX by reflection. Making reference to the electron content profile (right side, $h_{\min} = 100$ km, $h_{\max} = 400$ km, $N_m = 4 \times 10^{12}$ e/m³, N homogeneous horizontally) and to the simplified geometry (left side) reported below:

- 1) Determine the maximum distance *d* between the two satellites along the orbit for the system to work properly, when the operational frequency is $f_1 = 36$ MHz.
- 2) Assuming the minimum distance at point 1) and that the radar operational frequencies changes to $f_2 = 10$ GHz, considering that the zenithal tropospheric attenuation is $A_Z = 3$ dB, determine the power received at RX.

Assumptions: the gain of both antennas is G = 50 dB, the backscatter section of the ground is $\sigma = 1000$ m², the transmit power is $P_T = 100$ W.

Solution

1) For the wave to avoid total reflection due to the ionosphere, the angle θ needs to be higher than θ_{min} , determined as:

$$\cos(\theta_{min}) = \sqrt{1 - \left(\frac{9\sqrt{N_{\rm m}}}{f_1}\right)^2} \quad \Rightarrow \quad \theta_{min} = 30^\circ$$

Fixing $\theta = \theta_{min}$, the maximum distance is calculated as: $d = 2 H \tan(90^\circ - \theta) = 2078.5 \text{ km}$

2) Given the θ value determined at point 1), $L = H/\cos(90 - \theta) = 1200$ km. Working at $f_2 = 10$ GHz, the ionospheric effects can be neglected, but not the atmospheric ones. The power density reaching the ground is:

$$S = \frac{P_T}{4\pi L^2} GA_l = 1.39 \times 10^{-7} \,\mathrm{W}$$

where

$$A = \frac{A_Z}{\sin(\theta)} = 6 \text{ dB} \rightarrow A_l = 10^{-A/10} = 0.2512$$

The power received by RX is:

$$P_R = \frac{S\sigma}{4\pi L^2} A_l A_E = 1.38 \times 10^{-17} \,\mathrm{W}$$

where:

$$A_E = \frac{\lambda^2}{4\pi}G = 7.16 \text{ m}^2$$

Problem 2

A terrestrial link, with path length d = 5 km and operating at f = 80 GHz, is subject to fog. Both the transmitter (TX) and the receiver (RX) use antennas with vertical polarization (along y); as shown in the figure below, the fog slab consists only of equioriented ice needles, which induce a differential attenuation (but same phase shift) for the components of the wave along I and II, namely $\Delta \gamma = \gamma_{II} - \gamma_I = 1.2$ dB/km; the angle between axis II and axis x is 45°. For this link:

- 1) Determine the polarization of the wave in front of the receiver RX (specify: LH or RH for a circular/elliptical, tilt angle for a linear).
- 2) Which is the best polarization to be used to maximize the received power?

Assume that:

- the Earth surface is flat
- disregard the reflection from the ground and the attenuation due to gases

Solution

1) The electric field is aligned with y so both components on *I* and *II* will have the same amplitude, as they will be projected using $sin(45^\circ)$ and $cos(45^\circ)$:

$$E_I^{TX} = E_{II}^{TX}$$

 E_{II}^{TX} will be attenuated more than E_{I}^{TX} , specifically by $\Delta A_{dB} = \Delta \gamma d = 6$ dB. This means that the ratio of the two electric fields in front of the receiver (as they have the same phase shift) will be:

$$\frac{E_{II}^{RX}}{E_{I}^{RX}} = 10^{-\frac{\Delta AdB}{20}} = 0.5$$

As there is no differential phase shift, the polarization will still be linear, but with a tilt angle. Making reference to the figure below:

$$\alpha = \tan^{-1} \left(\frac{E_{II}^{RX}}{E_{I}^{RX}} \right) = 26.6^{\circ} \quad \Rightarrow \quad \beta = 45^{\circ} - \alpha = 18.4^{\circ}$$

2) The best polarization to be used in this context is the linear polarization along axis I (antennas will need to be tilted as accordingly): in this case, the electric field will not be depolarized and will be subject to the lowest attenuation.

Problem 3

A plane sinusoidal EM wave (f = 9 GHz) propagates from a medium with electric permittivity $\varepsilon_{r1} = 4$ into free space (assume $\mu_r = 1$ for both media). The expression of the incident electric field is:

$$\vec{E}_i(z,y) = -j\vec{\mu}_x e^{-j\beta\cos\theta z} e^{j\beta\sin\theta y} \, \mathrm{V/m}$$

- 1) Determine the polarization of the incident field \vec{E}_i .
- 2) Determine the value of θ to maximize the power received in A(z = 1 m, y = 0 m, x = 10 m), where an isotropic antenna is located.
- 3) Calculate the power received by the antenna in A for the θ value determined at point 2)
- 4) Determine the value of θ to minimize the power received in *A*.

Solution

1) The wave has just one component, specifically the TE one, so the polarization is linear along $-\vec{\mu}_x$.

2) As the wave is a TE wave, there is no chance to have total transmission (this is possible only with the TM wave, when θ_i is the Brewster's angle. Therefore, the power density transmitted in the second medium will be maximized by minimizing the reflection coefficient, which occurs when $\theta_i = 0^\circ$ (orthogonal incidence).

3) The reflection coefficients will be: $\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{\eta_0 / \sqrt{\varepsilon_{r2}} - \eta_0 / \sqrt{\varepsilon_{r1}}}{\eta_0 / \sqrt{\varepsilon_{r2}} + \eta_0 / \sqrt{\varepsilon_{r1}}} = 0.34$ The power reaching *A* will be: $S_A = \frac{1}{2} \frac{|\vec{E}_i|^2}{\eta_0 / \sqrt{\varepsilon_{r1}}} (1 - |\Gamma|^2) = 2.4 \text{ mW/m}^2$ The power received in *A* is: $P_R = S_A A_E = S_t \frac{\lambda^2}{4\pi} G = 0.21 \text{ \muW}$

4) The power received in A will be minimized (zero) if θ_i is larger than the critical angle; in fact, total reflection (evanescent wave in the second medium) is possible as medium 1 is denser than medium 2 (electromagnetically). The critical angle is:

$$\theta_C = \sin^{-1}\left(\sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}}\right) = 30^{\circ}$$

As a result, if $\theta_i \ge \theta_C$, no power will be received in *A*.

Problem 4

Consider a link from a LEO satellite to a ground station, operating at f = 30 GHz. Determine if the link operates properly down to the target elevation angle $\theta = 20^{\circ}$, knowing that the minimum signal-to-noise ratio (SNR) at the ground station must be 5 dB and that the link needs to be available for 99.9% of the time. The CCDF of the zenithal tropospheric attenuation is given by:

 $P(A_T^{dB}) = 100e^{-1.15A_T^{dB}}$ (A_T in dB and P in %)

Additional assumptions and data:

- use the simplified geometry depicted above (flat Earth)
- the specific attenuation of the troposphere is homogeneous vertically and horizontally
- ground station tracking the satellite optimally
- power transmitted by the satellite $P_T = 100$ W
- LEO satellite pointing always to the centre of the Earth
- radiation patter of the LEO satellite antenna (circular symmetry): $f_T = \cos(\phi)$
- disregard the cosmic background temperature contribution
- mean radiating temperature $T_{mr} = 290$ K
- gain of the antennas (on board the satellite and on the ground): $G_T = G_R = 30 \text{ dB}$
- altitude of the LEO satellite: H = 800 km
- bandwidth of the receiver: B = 1 MHz
- internal noise temperature of the receiver: $T_R = 350$ K

Solution

The signal-to-noise ratio (SNR) is given by

$$SNR = \frac{P_T G_T f_T (\lambda/4\pi L)^2 G_R f_R A_T}{k[T_R + T_{mr}(1 - A_T)]B}$$

where k is the Boltzmann's constant (1.38×10^{-23} J/K). As the link needs to be available for 99.9% of the time, the outage probability is $P_{out} = 100\%$ -99.9% = 0.1%. Using P_{out} in the CCDF expression, we obtain:

 $A_T^{dB} = 6 \text{ dB}$

Moreover, the attenuation along the slant path is:

 $A_S^{dB} = 17.56 \text{ dB} \rightarrow A_T = 0.0175$

Also, $f_T = \cos(90^\circ - \theta) = 0.342$, while $f_R = 1$.

Finally, $L = H/\sin(\theta) = 2339$ km.

Solving the equation above \rightarrow SNR = 9 dB > 5 dB \rightarrow the system operates correctly down to the target elevation angle.