## Radio and Optical Wave Propagation - Prof. L. Luini, July $\mathbf{1 2}^{\text {th }}, 2021$



SURNAME AND NAME $\qquad$
ID NUMBER $\qquad$
Signature $\qquad$

## Problem 1

The figure below shows a bistatic radar system consisting of two LEO satellites flying along the same orbit (satellite height above the ground $H=600 \mathrm{~km}$ ). The radar extracts information on the ground by measuring the power received at RX by reflection. Making reference to the electron content profile (right side, $h_{\min }=100 \mathrm{~km}, h_{\max }=400 \mathrm{~km}, N_{m}=4 \times 10^{12} \mathrm{e} / \mathrm{m}^{3}, N$ homogeneous horizontally) and to the simplified geometry (left side) reported below:

1) Determine the maximum distance $d$ between the two satellites along the orbit for the system to work properly, when the operational frequency is $f_{1}=36 \mathrm{MHz}$.
2) Assuming the minimum distance at point 1) and that the radar operational frequencies changes to $f_{2}=10 \mathrm{GHz}$, considering that the zenithal tropospheric attenuation is $A_{Z}=3 \mathrm{~dB}$, determine the power received at RX.

Assumptions: the gain of both antennas is $G=50 \mathrm{~dB}$, the backscatter section of the ground is $\sigma=1000 \mathrm{~m}^{2}$, the transmit power is $P_{T}=100 \mathrm{~W}$.


## Solution

1) For the wave to avoid total reflection due to the ionosphere, the angle $\theta$ needs to be higher than $\theta_{\text {min }}$, determined as:
$\cos \left(\theta_{\text {min }}\right)=\sqrt{1-\left(\frac{9 \sqrt{N_{\mathrm{m}}}}{f_{1}}\right)^{2}} \Rightarrow \theta_{\text {min }}=30^{\circ}$
Fixing $\theta=\theta_{\text {min }}$, the maximum distance is calculated as:
$d=2 H \tan \left(90^{\circ}-\theta\right)=2078.5 \mathrm{~km}$
2) Given the $\theta$ value determined at point 1$), L=H / \cos (90-\theta)=1200 \mathrm{~km}$. Working at $f_{2}=10 \mathrm{GHz}$, the ionospheric effects can be neglected, but not the atmospheric ones. The power density reaching the ground is:
$S=\frac{P_{T}}{4 \pi L^{2}} G A_{l}=1.39 \times 10^{-7} \mathrm{~W}$
where
$A=\frac{A_{Z}}{\sin (\theta)}=6 \mathrm{~dB} \rightarrow A_{l}=10^{-A / 10}=0.2512$
The power received by RX is:
$P_{R}=\frac{S \sigma}{4 \pi L^{2}} A_{l} A_{E}=1.38 \times 10^{-17} \mathrm{~W}$
where:
$A_{E}=\frac{\lambda^{2}}{4 \pi} G=7.16 \mathrm{~m}^{2}$

## Problem 2

A terrestrial link, with path length $d=5 \mathrm{~km}$ and operating at $f=80 \mathrm{GHz}$, is subject to fog. Both the transmitter (TX) and the receiver (RX) use antennas with vertical polarization (along y); as shown in the figure below, the fog slab consists only of equioriented ice needles, which induce a differential attenuation (but same phase shift) for the components of the wave along $I$ and $I I$, namely $\Delta \gamma=\gamma_{I I}-\gamma_{I}=1.2 \mathrm{~dB} / \mathrm{km}$; the angle between axis $I I$ and axis $x$ is $45^{\circ}$. For this link:

1) Determine the polarization of the wave in front of the receiver RX (specify: LH or RH for a circular/elliptical, tilt angle for a linear).
2) Which is the best polarization to be used to maximize the received power?

Assume that:

- the Earth surface is flat
- disregard the reflection from the ground and the attenuation due to gases



## Solution

1) The electric field is aligned with $y$ so both components on $I$ and $I I$ will have the same amplitude, as they will be projected using $\sin \left(45^{\circ}\right)$ and $\cos \left(45^{\circ}\right)$ :
$E_{I}^{T X}=E_{I I}^{T X}$
$E_{I I}^{T X}$ will be attenuated more than $E_{I}^{T X}$, specifically by $\Delta A_{d B}=\Delta \gamma d=6 \mathrm{~dB}$. This means that the ratio of the two electric fields in front of the receiver (as they have the same phase shift) will be:
$\frac{E_{I I}^{R X}}{E_{I}^{R X}}=10^{-\frac{\Delta A d B}{20}}=0.5$
As there is no differential phase shift, the polarization will still be linear, but with a tilt angle. Making reference to the figure below:
$\alpha=\tan ^{-1}\left(\frac{E_{I I}^{R X}}{E_{I}^{R X}}\right)=26.6^{\circ} \rightarrow \beta=45^{\circ}-\alpha=18.4^{\circ}$

2) The best polarization to be used in this context is the linear polarization along axis $I$ (antennas will need to be tilted as accordingly): in this case, the electric field will not be depolarized and will be subject to the lowest attenuation.

## Problem 3

A plane sinusoidal EM wave ( $f=9 \mathrm{GHz}$ ) propagates from a medium with electric permittivity $\varepsilon_{r 1}=4$ into free space (assume $\mu_{r}=1$ for both media). The expression of the incident electric field is:

$$
\vec{E}_{i}(z, y)=-j \vec{\mu}_{x} e^{-j \beta \cos \theta z} e^{j \beta \sin \theta y} \mathrm{~V} / \mathrm{m}
$$

1) Determine the polarization of the incident field $\vec{E}_{i}$.
2) Determine the value of $\theta$ to maximize the power received in $A(z=1 \mathrm{~m}, y=0 \mathrm{~m}, x=10 \mathrm{~m})$, where an isotropic antenna is located.
3) Calculate the power received by the antenna in $A$ for the $\theta$ value determined at point 2)
4) Determine the value of $\theta$ to minimize the power received in $A$.


## Solution

1) The wave has just one component, specifically the TE one, so the polarization is linear along $-\vec{\mu}_{x}$.
2) As the wave is a TE wave, there is no chance to have total transmission (this is possible only with the TM wave, when $\theta_{i}$ is the Brewster's angle. Therefore, the power density transmitted in the second medium will be maximized by minimizing the reflection coefficient, which occurs when $\theta_{i}=0^{\circ}$ (orthogonal incidence).
3) The reflection coefficients will be:
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{\eta_{0} / \sqrt{\varepsilon_{r 2}}-\eta_{0} / \sqrt{\varepsilon_{r 1}}}{\eta_{0} / \sqrt{\varepsilon_{r 2}}+\eta_{0} / \sqrt{\varepsilon_{r 1}}}=0.34$
The power reaching $A$ will be:
$S_{A}=\frac{1}{2} \frac{\left|\vec{E}_{j}\right|^{2}}{\eta_{0}} / \sqrt{\varepsilon_{r 1}}\left(1-|\Gamma|^{2}\right)=2.4 \mathrm{~mW} / \mathrm{m}^{2}$
The power received in $A$ is:
$P_{R}=S_{A} A_{E}=S_{t} \frac{\lambda^{2}}{4 \pi} G=0.21 \mu \mathrm{~W}$
4) The power received in $A$ will be minimized (zero) if $\theta_{i}$ is larger than the critical angle; in fact, total reflection (evanescent wave in the second medium) is possible as medium 1 is denser than medium 2 (electromagnetically). The critical angle is:

$$
\theta_{C}=\sin ^{-1}\left(\sqrt{\frac{\varepsilon_{r 2}}{\varepsilon_{r 1}}}\right)=30^{\circ}
$$

As a result, if $\theta_{i} \geq \theta_{C}$, no power will be received in $A$.

## Problem 4

Consider a link from a LEO satellite to a ground station, operating at $f=30 \mathrm{GHz}$. Determine if the link operates properly down to the target elevation angle $\theta=20^{\circ}$, knowing that the minimum signal-to-noise ratio (SNR) at the ground station must be 5 dB and that the link needs to be available for $99.9 \%$ of the time. The CCDF of the zenithal tropospheric attenuation is given by:

$$
P\left(A_{T}^{d B}\right)=100 e^{-1.15 A_{T}^{d B}} \quad\left(A_{T} \text { in } \mathrm{dB} \text { and } P \text { in } \%\right)
$$



Additional assumptions and data:

- use the simplified geometry depicted above (flat Earth)
- the specific attenuation of the troposphere is homogeneous vertically and horizontally
- ground station tracking the satellite optimally
- power transmitted by the satellite $P_{T}=100 \mathrm{~W}$
- LEO satellite pointing always to the centre of the Earth
- radiation patter of the LEO satellite antenna (circular symmetry): $f_{T}=\cos (\phi)$
- disregard the cosmic background temperature contribution
- mean radiating temperature $T_{m r}=290 \mathrm{~K}$
- gain of the antennas (on board the satellite and on the ground): $G_{T}=G_{R}=30 \mathrm{~dB}$
- altitude of the LEO satellite: $H=800 \mathrm{~km}$
- bandwidth of the receiver: $B=1 \mathrm{MHz}$
- internal noise temperature of the receiver: $T_{R}=350 \mathrm{~K}$


## Solution

The signal-to-noise ratio (SNR) is given by
$S N R=\frac{P_{T} G_{T} f_{T}(\lambda / 4 \pi L)^{2} G_{R} f_{R} A_{T}}{k\left[T_{R}+T_{m r}\left(1-A_{T}\right)\right] B}$
where $k$ is the Boltzmann's constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$. As the link needs to be available for $99.9 \%$ of the time, the outage probability is $P_{\text {out }}=100 \%-99.9 \%=0.1 \%$. Using $P_{\text {out }}$ in the CCDF expression, we obtain:
$A_{T}^{d B}=6 \mathrm{~dB}$
Moreover, the attenuation along the slant path is:
$A_{S}^{d B}=17.56 \mathrm{~dB} \rightarrow A_{T}=0.0175$

Also, $f_{T}=\cos \left(90^{\circ}-\theta\right)=0.342$, while $f_{R}=1$.
Finally, $L=H / \sin (\theta)=2339 \mathrm{~km}$.
Solving the equation above $\rightarrow \mathrm{SNR}=9 \mathrm{~dB}>5 \mathrm{~dB} \rightarrow$ the system operates correctly down to the target elevation angle.

