Telecommunication Systems

July $\mathbf{1 8}^{\text {th }}, 2019$

SURNAME AND NAME \qquad
ID NUMBER \qquad
Signature \qquad

Problem 1

A source with voltage $V_{g}=10 \mathrm{~V}$ and internal impedance $Z_{g}=50 \Omega$ is connected to a transmission line with characteristic impedance $Z_{C}=75 \Omega$, the frequency is $f=600 \mathrm{MHz}$ and the length of the line is $l=4.5 \mathrm{~m}$.
a) Determine the value of the load Z_{L} to maximize the absorbed power.
b) Calculate the power absorbed by the load using the value of Z_{L} determined at point a)
c) OPTIONAL: calculate the power absorbed by the internal impedance $Z_{g}=50 \Omega$ using the value of Z_{L} determined at point a)

Solution

a) The wavelength is:
$\lambda=\lambda_{0}=0.5 \mathrm{~m}$
As a consequence, the length of the line normalized to the wave length is:
$l / \lambda=9$
In other terms, the line is a multiple of λ. In this case:
$Z_{B B}=Z_{L}$
Therefore, in order to maximize the power absorbed by the load $\rightarrow Z_{L}=Z_{g}=50 \Omega$. In fact:
$\Gamma_{g}=\frac{Z_{B B}-Z_{g}}{Z_{B B}+Z_{g}}=\frac{Z_{L}-Z_{g}}{Z_{L}+Z_{g}}=0$
b) Therefore, the power absorbed by the load is:
$P_{L}=P_{A V}=\frac{\left|V_{g}\right|^{2}}{8 \operatorname{Re}\left[Z_{g}\right]}=0.25 \mathrm{~W}$
c) At section BB , the voltage on Z_{g} is given by:
$V_{Z g}=V_{g} \frac{Z_{g}}{Z_{g}+Z_{L}}=\frac{V_{g}}{2} \mathrm{~V}$
Therefore, the power absorbed by Z_{g} is:
$P_{g}=\frac{1}{2}\left|V_{Z_{g}}\right|^{2} \operatorname{Re}\left[\frac{1}{Z_{g}}\right]=0.25 \mathrm{~W}$
As expected in the case of perfect matching, the power absorbed by Z_{g} and by Z_{L} is the same.

Problem 2

Making reference to the figure below, a ground station points to a spacecraft with variable elevation angle θ, according to the graph reported below (right side). The link operational frequency is $f=30 \mathrm{MHz}$ and maximum electron content along the ionospheric profile is constant and equal to $N_{\max }=1.8 \times 10^{12} \mathrm{e} / \mathrm{m}^{3}$. Calculate the percentage of time during the day for which the link to the spacecraft can be established.

Solution

To determine if the ionosphere can be crossed, we need to invert the following equation to determine the critical angle θ_{C}, given f and $N_{\max }$:
$\cos \theta_{C}=\sqrt{1-\left(\frac{9 \sqrt{N_{\max }}}{f}\right)^{2}} \Rightarrow \theta_{C}=\cos ^{-1}\left(\sqrt{1-\left(\frac{9 \sqrt{N_{\max }}}{f}\right)^{2}}\right)=23.7^{\circ}$
If $\theta>\theta_{C}$, the wave crosses the ionosphere, otherwise it is completely reflected.
The trend of θ in the figure is given by (t expressed in hours):
$\theta=\frac{\theta_{1}-\theta_{2}}{24} t+\theta_{2}$
By imposing that $\theta>\theta_{C}$:
$\frac{\theta_{1}-\theta_{2}}{24} t+\theta_{2}>\theta_{C} \Rightarrow t>\frac{24\left(\theta_{C}-\theta_{2}\right)}{\theta_{1}-\theta_{2}} \approx 10 \mathrm{~h}$
The time percentage of the day $(24-10=14 \mathrm{~h})$ is therefore $P=58.3 \%$.

Problem 3

A uniform plane wave propagates in a perfect dielectric with $\varepsilon_{r 1}=9$ and $\mu_{r 1}=1$, and hits the surface of a medium characterized by conductivity $\sigma=0.5 \mathrm{~S} / \mathrm{m}, \varepsilon_{r 2}=1$ and $\mu_{r 2}=1$. The incident electric field is

$$
\vec{E}_{i}=e^{-j 0.00628 z} \vec{\mu}_{x} \mathrm{~V} / \mathrm{m}
$$

Calculate:
a) The wavelength of the wave in the second medium
b) The electric field reaching point $P(0,0,3 \mathrm{~m})$

Solution

a) First, it is necessary to calculate the frequency. Based on $\beta_{1}=0.00628 \mathrm{rad} / \mathrm{m}$:
$f=\frac{\beta_{1} c}{2 \pi \sqrt{\varepsilon_{r 1}}}=100 \mathrm{kHz}$
The wavelength in the second medium depends on the propagation constant. The loss tangent for this medium is:
$\tan \delta=\frac{\sigma}{\omega \varepsilon_{0}}=9 \times 10^{4}$
Thus the good conductor approximations can be used; therefore:
$\gamma_{2}=\alpha_{2}+j \beta_{2}=\sqrt{\frac{\omega \mu_{2} \sigma}{2}}+j \sqrt{\frac{\omega \mu_{2} \sigma}{2}}=0.44(1+j) 1 / \mathrm{m}$
The wavelength in the second medium is:
$\lambda_{2}=\frac{2 \pi}{\beta_{2}}=14.1 \mathrm{~m}$
b) The electric field reaching point P depends on the reflection coefficient, which, in turn, depends on the intrinsic impedance of the medium. Using the same kind of approximation:
$\eta_{1}=\frac{\eta_{0}}{\sqrt{\varepsilon_{r 1}}}=125.7 \Omega$
$\eta_{2}=(1+j) \sqrt{\frac{\omega \mu_{2}}{2 \sigma}}=8.9 \times 10^{-1} \Omega$
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=-0.9859+j 0.0139$
The electric field in position P is:
$\vec{E}_{t}(P)=(1+\Gamma) e^{-\alpha_{2} z p} e^{-j \beta_{2} z_{p}} \vec{\mu}_{x}=(4.5-j 2.8) \vec{\mu}_{x} \mathrm{mV} / \mathrm{m}$

Problem 4

Consider the downlink from a GEO satellite to a ground station at elevation angle of $\theta=40^{\circ}$. The link operational frequency is $f=15 \mathrm{GHz}$. Calculate the required ground station pointing accuracy $P_{A C C}$ to guarantee a received power P_{R} higher than $5 \times 10^{-10} \mathrm{~W}$.
To this aim, use the following data:

- the gain of both antennas (parabolic type) is $G=50 \mathrm{~dB}$ and their efficiency is $\eta=0.6$
- antennas are optimally pointed
- pointing loss of the satellite antenna $P_{S A T}^{\text {LOSS }}=0.1 \mathrm{~dB}$
- the power transmitted by the satellite is $P_{T}=100 \mathrm{~W}$
- the distance between the ground station and the satellite is $H=38000 \mathrm{~km}$
- no satellite on-board losses and no waveguide losses in the receiver
- atmospheric attenuation $A=3 \mathrm{~dB}$

If rain starts, the requirement on $P_{A C C}$ will be more stringent or more relaxed?

Solution

The wavelength is $\lambda=c / f=0.02 \mathrm{~m}$. The gain of the two antennas is:
$G_{T}=G_{R}=50 \mathrm{~dB}=100000 \mathrm{~dB}$
The atmospheric attenuation is:
$A=3 \mathrm{~dB} \approx 0.5$
The received power is:
$P_{R}=P_{T} G_{T} f_{T} P_{S A T}^{\text {LOSS }}\left(\frac{\lambda}{4 \pi H}\right)^{2} G_{R} f_{R} P_{G}^{\text {LOSS }} A$
where $f_{T}=1$ and $f_{R}=1$ (antennas are optimally pointed), while $P_{S A T}^{L O S S}$ and $P_{G}^{L O S S}$ are the pointing losses of the satellite and ground antennas, respectively. The ground station pointing loss includes the pointing accuracy of the ground station ($P_{A C C}$ expressed in degrees and $P_{G}^{\text {LOSS }}$ in dB):

$$
P_{G}^{\text {LOSS }}=12\left(\frac{P_{A C C}}{70 \lambda / D}\right)^{2}
$$

where D is the diameter of the antennas, which can be calculated from the antenna efficiency and the gain as:

$$
A_{e f f}=\eta A=\frac{\lambda^{2}}{4 \pi} G \Rightarrow \eta\left(\frac{D}{2}\right)^{2} \pi=\frac{\lambda^{2}}{4 \pi} G \Rightarrow D=\frac{\lambda}{\pi} \sqrt{\frac{G}{\eta}}=2.6 \mathrm{~m}
$$

Rearranging the link budget equation to isolate $P_{G}^{\text {LOSS }}$ ($P_{S A T}^{\text {LOSS }}$ must be converted in linear scale):

$$
P_{G}^{\text {LOSS }}=\frac{P_{R}}{P_{T} G_{T} P_{S A T}^{\text {Loss }}\left(\frac{\lambda}{4 \pi H}\right)^{2} G_{R} A}=0.5824=2.35 \mathrm{~dB}
$$

Finally, by inverting $P_{G}^{\text {LOSS }}$:

$$
P_{A C C}<70 \frac{\lambda}{D} \sqrt{\frac{P_{G}^{\text {LOSS }}}{12}}=0.24^{\circ}
$$

The presence of rain will increase the atmospheric attenuation, thus reducing the received power: the requirement on $P_{A C C}$ will be more stringent (higher pointing precision).

Problem 5

Consider the block diagram below, relative to the front end of a radio receiver. The antenna noise temperature is $T_{A}=160 \mathrm{~K}$. The transmission line has a physical temperature $T_{W G}=30^{\circ} \mathrm{C}$, its length is $l=3 \mathrm{~m}$ and is characterized by a specific attenuation of $\alpha=0.3 \mathrm{~dB} / \mathrm{m}$. The receiver chain consists in the cascade of the low noise amplifier, a passband filter and a second amplifier. The gain G and the noise figure NF associated to each component are reported below. Calculate the equivalent noise temperature at the end of the receiver chain (position labelled as OUT).

Solution

The equivalent noise temperature at the end of the receiver chain is given by:
$T_{\text {OUT }}=T_{A}+T_{W}+T_{1}+\frac{T_{2}}{G_{1}}+\frac{T_{3}}{G_{1} G_{2}}$
where T_{W} is the noise introduced by the waveguide, while T_{i} is the equivalent noise temperature of the i-th element in the receiver chain. Each of the latter can be calculated from the noise figure as:
$T_{i}=290\left(10^{\frac{N F_{i}}{10}}-1\right) \rightarrow T_{1}=169.62 \mathrm{~K}, T_{2}=864.51 \mathrm{~K}$ and $T_{3}=438.45 \mathrm{~K}$
The attenuation introduced by the waveguide is:
$A_{W G}^{d B}=\alpha l=0.9 \mathrm{~dB} \rightarrow A_{W G}=0.8128$
The equivalent noise temperature introduced by the waveguide is therefore:
$T_{W}=T_{W G}\left(1-A_{W G}\right)=56.74 \mathrm{~K}$
As a result ($G_{1}=100, G_{2}=1$ and $G_{3}=31.6$, in linear scale):
$T_{\text {OUT }}=399.39 \mathrm{~K}$

