Telecommunication Systems - Prof. L. Luini, January 29 ${ }^{\text {th }}, 2021$

SURNAME AND NAME \qquad
ID NUMBER \qquad
Signature \qquad

Problem 1

Making reference to the figure below, the transmitter TX needs to reach the user RX, which is at distance $d_{1}=1200 \mathrm{~km}$, by exploiting the effects induced by the ionosphere. The elevation angle of TX is $\theta=30^{\circ}$. The ionosphere can be modelled with the electron density profile sketched in the figure (right side), where $N_{\min }=4 \times 10^{2} \mathrm{e} / \mathrm{m}^{3}, N_{\max }=4 \times 10^{12} \mathrm{e} / \mathrm{m}^{3}, h_{\min }=100 \mathrm{~km}, h_{\max }=400 \mathrm{~km}$ and $h_{\text {top }}=700 \mathrm{~km}$.

1) Calculate the link frequency f_{1} to reach $R X$.
2) Assuming now that RX can move further from TX (keeping the same elevation angle), calculate the maximum distance d_{2} at which RX can be reached, as well as the corresponding link frequency f_{2}.
3) What happens if the link frequency increases beyond f_{2} ?

Assume: the virtual reflection height h_{V} is 1.2 of h_{R}, the height at which the wave is actually reflected.

Solution:

1) Considering the figure below, given the distance between the $T X$ and $R X$ and the elevation angle, the virtual reflection height h_{V} is given by:
$h_{V 1}=\frac{d_{1}}{2} \tan \theta=346.4 \mathrm{~km}$
The actual reflection occurs at $h_{R 1}=h_{V 1} / 1.2=288.7 \mathrm{~km}$. The value of electron density N associated to $h_{R 1}$ can be obtained from the following linear expression (easily derivable from the profile sketch):
$N=\frac{N_{\max }-N_{\min }}{h_{\max }-h_{\min }}\left(h-h_{\text {min }}\right)+N_{\text {min }}$
Thus, for $h=h_{R 1}$, we obtain:
$N_{1}=2.5 \times 10^{12} \mathrm{e} / \mathrm{m}^{3}$
The elevation angle and the frequency are linked by the following expression:
$\cos \theta=\sqrt{1-\left(\frac{f_{P}}{f_{1}}\right)^{2}}=\sqrt{1-\left(\frac{9 \sqrt{N_{1}}}{f_{1}}\right)^{2}}$
Solving for the frequency f_{1}, we obtain:
$f_{1}=\sqrt{\frac{81 N_{1}}{1-[\cos (\theta)]^{2}}} \approx 28.6 \mathrm{MHz}$

2) The maximum distance d_{2} between TX and RX corresponds to the point of maximum reflection along the profile, which corresponds to $h_{\max }$, i.e. the height where the maximum electron density $N_{\max }$ is found. The maximum distance can be easily calculated as:
$d_{2}=2 h_{V 2} / \tan \theta^{2 \cdot 1.2 \cdot h_{\max }} / \tan \theta=1662.3 \mathrm{~km}$
The correspondent link frequency needed to achieve reflection at such height is:
$f_{2}=\sqrt{\frac{81 N_{\max }}{1-[\cos (\theta)]^{2}}} \approx 36 \mathrm{MHz}$
3) If the operational frequency exceeds f_{2}, the wave crosses the ionosphere.

Problem 2

A plane sinusoidal EM wave propagates from vacuum into a perfect metallic surface (perfect electric conductor) with orthogonal incidence (assume both $\varepsilon_{r}=1$ and $\mu_{r}=1$ for this material). The expression for the electric field is:

$$
\vec{E}=\left(j \vec{\mu}_{y}+\vec{\mu}_{x}\right) e^{-j 188.62 z} \mathrm{~V} / \mathrm{m}
$$

1) Determine the frequency of the EM wave.
2) Determine the polarization of the incident EM wave.
3) Determine the polarization of the reflected wave.

Solution:

1) The frequency of the incident EM wave can be derived from the phase constant $\beta=188.62$ $\mathrm{rad} / \mathrm{m}$:
$\beta=\omega \sqrt{\mu_{0} \varepsilon_{0}}=\frac{2 \pi f}{c} \Rightarrow f=\frac{c \beta}{2 \pi}=9 \mathrm{GHz}$
2) The polarization of the incident wave is circular because the two TE and TM components have the same amplitude ($1 \mathrm{~V} / \mathrm{m}$) and a phase shift of $\pi / 2$. Setting z to 0 , and expressing the dependence on time, we can easily understand the electric field rotation direction:

$$
\vec{E}(t)=\operatorname{Re}\left\{\left[j \vec{\mu}_{y}+\vec{\mu}_{x}\right] e^{j \omega t}\right\}=\cos \left(\omega t+\frac{\pi}{2}\right) \vec{\mu}_{y}+\cos (\omega t) \vec{\mu}_{x} \mathrm{~V} / \mathrm{m}
$$

Thus, for $t=\left.0 \rightarrow \vec{E}\right|_{\varrho t=0}=\vec{\mu}_{x} \mathrm{~V} / \mathrm{m}$
Thus, for $\omega t=\pi /\left.2 \rightarrow \vec{E}\right|_{\omega t=\pi / 2}=-\vec{\mu}_{y} \mathrm{~V} / \mathrm{m}$

The polarization of the incident wave is LHCP.
3) When a plane wave hits a perfect electric conductor (PEC), the reflection coefficient is always $\Gamma=-1$. Therefore, both components of the electric field will change their sign, and the wave plane direction will also change. This is shown in the equation of the reflected wave:

$$
\vec{E}_{R}=\left(-j \vec{\mu}_{y}-\vec{\mu}_{x}\right) e^{j 188.62 z} \mathrm{~V} / \mathrm{m}
$$

The polarization of the reflected wave is still circular; also, repeating the same reasoning above, we obtain:

$$
\vec{E}_{R}(t)=\operatorname{Re}\left\{\left[-j \vec{\mu}_{y}-\vec{\mu}_{x}\right] e^{j \omega t}\right\}=-\cos \left(\omega t+\frac{\pi}{2}\right) \vec{\mu}_{y}-\cos (\omega t) \vec{\mu}_{x} \mathrm{~V} / \mathrm{m}
$$

Thus, for $t=\left.0 \rightarrow \vec{E}_{R}\right|_{\omega t=0}=-\vec{\mu}_{x} \mathrm{~V} / \mathrm{m}$
Thus, for $\omega t=\pi /\left.2 \rightarrow \vec{E}_{R}\right|_{\omega t=\pi / 2}=\vec{\mu}_{y} \mathrm{~V} / \mathrm{m}$

The polarization of the incident wave is RHCP. Note that, as the direction of the reflected plane wave changes (direction $=-z$), so does also the view of the axes, with the x-axis pointing to the right side this time.

Problem 3

A transmitter with voltage $V_{g}=100 \mathrm{~V}$ (sinusoidal regime) and internal impedance $Z_{g}=50 \Omega$ is connected to a load $Z_{L}=-\mathrm{j} 10 \Omega$ by a transmission line with characteristic impedance $Z_{C}=100 \Omega$ and attenuation coefficient $\alpha=30 \mathrm{~dB} / \mathrm{km}$. The line length is $l=30 \mathrm{~m}$ and the frequency is $f=300$ MHz .
Calculate:

1) The power absorbed by the load.
2) The value of Z_{L} to maximize P_{L}, the power transferred to the load.
3) The value of P_{L} and the power absorbed by the line, for the conditions at point 2).

Solution

1) As the load is imaginary (it corresponds to a capacitor), no power will be absorbed by Z_{L}.
2) The value of Z_{L} maximizing the power absorbed by the load is:
$Z_{L}=100 \Omega=Z_{C}$
In fact, in this case, the load will guarantee at least a partial match of the load with the transmission line.
3) In the conditions at point 2), the power absorbed by the load is given by:
$P_{L}=P_{A V}\left(1-\left|\Gamma_{g}\right|^{2}\right) e^{-2 \alpha l} \mathrm{~W}$
$P_{A V}=\frac{\left|V_{g}\right|^{2}}{8 \operatorname{Re}\left\{Z_{g}\right\}}=25 \mathrm{~W}$
The attenuation coefficient must be first converted to Np / m :
$\alpha=\frac{30}{8.686 \cdot 1000}=0.0035 \mathrm{~Np} / \mathrm{m}$
Finally:
$\Gamma_{g}=\frac{Z_{B B}-Z_{g}}{Z_{B B}+z_{g}}=\frac{z_{L}-z_{g}}{z_{L}+z_{g}}=0.334$
Note that in this case $Z_{B B}=Z_{L}$ as the load is matched to the line.
Therefore:

$$
P_{L}=18.1 \mathrm{~W}
$$

Finally, the power absorbed by the line is:
$P_{\text {line }}=P_{A V}\left(1-\left|\Gamma_{g}\right|^{2}\right)-P_{L}=4.1 \mathrm{~W}$

Problem 4

Consider a link from a GEO satellite to a ground station (elevation angle $\theta=30^{\circ}$) and assume that, initially, there is no atmospheric attenuation: associate this condition to the reference signal-to-noise ratio SNR_{0}. Evaluate the decrease in the SNR (as a function of SNR_{0}) when clouds begin to affect the link. Consider: no cosmic background noise, link frequency $f=50 \mathrm{GHz}$, cloud thickness $h_{C}=2$ $\mathrm{km}, T_{m r}$ for clouds $=0{ }^{\circ} \mathrm{C}$, specific cloud attenuation (constant vertically and horizontally) $\gamma=1.46 \mathrm{~dB} / \mathrm{km}$, receiver internal noise temperature $T_{R}=300 \mathrm{~K}$.

Solution:

The SNR is given by (no attenuation case):
$S N R_{0}=\frac{P_{R}}{P_{N}}=\frac{P_{T} G_{T} f_{T}(\lambda / 4 \pi D)^{2} G_{R} f_{R}}{k T_{R} B}$
where D is the distance between the satellite and the ground station and B is the RX bandwidth.
With cloud attenuation, the SNR changes to:
$S N R_{1}=\frac{P_{R} A_{C}}{P_{N}^{C}}=\frac{P_{T} G_{T} f_{T}(\lambda / 4 \pi D)^{2} G_{R} f_{R} A_{C}}{k T_{C} B}$
where A_{C} is the rain induced attenuation and T_{C} is the RX noise temperature in case of clouds.
As a matter of fact, the SNR decreases both because of the additional attenuation induced by clouds and because of the increase in the noise received by the antenna.

As for A_{C} :

$$
\left(A_{C}\right)_{d B}=\gamma L_{S}=\gamma \frac{h_{C}}{\sin \theta} \approx 5.84 \mathrm{~dB} \rightarrow A_{C}=10^{-(5.84 / 10)}=0.26
$$

As for T_{C} :
$T_{C}=T_{R}+T_{A}=T_{R}+\left(1-A_{C}\right) T_{m r} \approx 502 \mathrm{~K}$

In cloudy conditions, the RX noise increases by a factor 1.67 if compared to the initial conditions; i.e.:
$\frac{T_{C}}{T_{R}}=\frac{T_{R}+\left(1-A_{C}\right) T_{m r}}{T_{R}} \approx 1.67 \quad \rightarrow \quad T_{C}=1.67 T_{R}$
As a result:

$$
S N R_{1}=\frac{P_{R} A_{C}}{P_{N}^{C}}=\frac{A_{C}}{1.67} \frac{P_{T} G_{T} f_{T}(\lambda / 4 \pi D)^{2} G_{R} f_{R}}{k T_{R} B}=\frac{A_{C}}{1.67} S N R_{0}=0.16 S N R_{0}
$$

